Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer researchers found a new mechanism potentially explaining evolution of signalling pathways

07.02.2006


Cancer researchers at the University of Helsinki, Finland, in trying to find a novel tumor suppressor gene, instead found an important evolutionary change that occurred in a key developmental signalling pathway. The finding suggests a potential mechanism for evolution of complex intercellular signalling pathways. The results are published in today’s issue of the journal Developmental Cell.



A relatively small number of evolutionary conserved genes are responsible for controlling the development of the diverse range of animal species. Most of these genes have been originally identified in fruit fly, based on the analysis of mutations that alter the body pattern of a developing embryo.

During embryonic development, cells regulate the growth and differentiation of each other by secreting extracellular signalling molecules (growth factors or morphogens), which bind to receptors present on the surface of other cells. The receptors in turn activate intracellular signalling pathway composed of proteins that relay the signal to the nucleus, activating specialized proteins called transcription factors. The transcription factors then affect expression of genes that induce cell growth and differentiation.


The signal transduction molecules and mechanisms of major developmental signalling pathways are thought to be evolutionary conserved between invertebrates and vertebrates in such a way that if a signalling pathway is present in a given organism, it includes all the major classes of components found in humans. Because of the lack of intermediate forms, the evolution of these complex signalling pathways is not understood in detail, and the emergence of signalling pathways with multiple specific and essential components has even been used as an argument against evolution.

Because multiple components of the Hedgehog (Hh) signalling pathway are defective in human cancers, Markku Varjosalo in Professor Jussi Taipale’s laboratory (the University of Helsinki and National Public Health Institute of Finland) cloned the gene for mammalian homolog of a key regulator of fruit fly Hh signalling pathway, Costal-2. However, further analysis of the function of the mammalian gene revealed that it did not function as a Hh pathway regulator, let alone as the tumor suppressor gene the researchers had hoped for. Instead, together with a group led by Prof. Rune Toftgård and Dr. Stephan Teglund from Karolinska Institutet, the researchers found that another gene (Suppressor of Fused), which has a minor role in Hh signalling in fruit fly is critical for Hh pathway regulation in mammals.

The finding is the first clear demonstration of a major difference in the function of conserved signalling pathways between species. The results also show that multi-component pathways evolve, in part, by the insertion of novel proteins between existing pathway components. This insertion mechanism can potentially explain a challenging aspect of evolutionary biology regarding the emergence of signalling pathways with multiple specific components.

Loss of Hh pathway activity can cause a variety of human birth defects, such as polydactyly, cyclopia and holoprosencephaly. On the other hand, inappropriate activation of the Hh signaling pathway can cause multiple types of human cancer, including the most common type of cancer in Caucasians (basal cell carcinoma) and the most common brain tumor in children (medulloblastoma). Therefore, the study of the Hh signalling pathway is important for the understanding of and developing cures for human disease.

The work was supported by the Academy of Finland, Biocentrum Helsinki, The University of Helsinki, the Sigrid Juselius Foundation, and Finnish Cancer Organizations.

Paivi Lehtinen | alfa
Further information:
http://wwww.helsinki.fi

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>