Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death : An anti-rejection drug for the treatment of Huntington’s disease

07.02.2006


At the Institut Curie, CNRS and Inserm researchers have shown that Huntington’s disease may be treated using the drug FK506, which is also used clinically to prevent graft rejection. Like Alzheimer’s and Parkinson’s, Huntington’s disease is characterized by the abnormal death of neurons.



The Institut Curie researchers have discovered that FK506 blocks the toxicity of the protein huntingtin, which causes the death of certain neurons leading to disease onset. FK506 is already used in a clinical setting and so is a candidate for fast-track development as a treatment for Huntington’s disease.

This study was published in the February 1, 2006 issue of The Journal of Neuroscience.


Huntington’s disease is a genetic disorder which affects approximately 6 000 people in France and is of concern to over 12 000 carriers of the mutated gene as yet untouched by clinical signs. It is characterized by uncontrolled movements, personality changes, dementia and death 10 to 20 years after onset of the first symptoms (see "Additional information").

Huntington’s disease results from changes in the IT15 gene, which encodes a protein, huntingtin, whose function is incompletely elucidated. Normal huntingtin contains repeats of the amino acid glutamine, but mutant huntingtin contains more than 35 to 40 glutamines and induces the disease. Symptoms occur earlier as the number of repeats increases.

This abnormal expansion of the polyglutamine tract in huntingtin results in structural changes, and the mutant huntingtin accumulates in neurons thereby causing their dysfunction and ultimately their death.

The same type of mutation causes other neurodegenerative diseases, each involving different regions of the brain. In Huntington’s disease, degeneration occurs in the neurons of the striatum, which are involved in the control of movement.

Raúl Pardo and Emilie Colin at the Institut Curie are studying the mechanisms that lead to neuron death in Huntington’s disease, under the direction of Frédéric Saudou and Sandrine Humbert(1).

They have now shown that calcineurin, a protein abundant in the brain, chemically alters mutant huntingtin, which becomes more toxic for neurons.

They have also discovered that by inhibiting calcineurin, FK506 “corrects” this chemical alteration in mutant huntingtin both in cultured neurons and in an animal model of the disease. FK506 even prevents the death of the striatal neurons. So, FK506 negates the harmful effects of mutant huntingtin in neurons.

FK506 is already used therapeutically to prevent graft rejection, and so may be a candidate for fast-track development as a treatment for Huntington’s disease.

Catherine Goupillon | alfa
Further information:
http://www.jneurosci.org/
http://www.curie.fr

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>