Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WOWing the crowds


A team of scientists at the Weizmann Institute of Science and the Hebrew University of Jerusalem has developed a method that could speed up the process of identifying novel protein molecules for medical or biological research hundreds of times over.

In today’s high-throughput searches for specific genes, proteins or protein interactions, plates containing rows of tiny wells have replaced old-fashioned test tubes. However, trawling for a gene or protein with just the right qualifications may require sorting through millions, or even billions, of possibilities. Instead of wells, the new method, developed by Dr. Dan Tawfik and Amir Aharoni of the Institute’s Biological Chemistry Department and Prof. Shlomo Magdassi of the Hebrew University’s Institute of Chemistry with support from the Israel Ministry of Science and Technology, relies on microscopic droplets of water suspended inside oil droplets. Using their system, millions of tests can be performed at once.

The method, which relies on a type of emulsion dubbed WOW, for water-oil-water, takes a page from living cells, which employ a fatty membrane to keep the inside and outside environments separate. The oily layer surrounding each miniscule water droplet acts as a barrier, keeping genes, proteins and other materials contained. Alternately, the team inserted harmless bacteria containing genes for testing into the drops. Confining individual tests within a cell-like bubble allowed them to employ a widely-used method for analyzing living cells. This method involves adding a fluorescent marker that lights up in color when activated by the right protein and sorting through the cells for those containing the marked proteins and their coding genes. Automated devices for sorting cells can handle many thousands of droplets per second. "Searches that now take a year to complete can be done in a matter of days," says Tawfik.

To demonstrate the efficiency of the system, the team isolated a new enzyme from a gene that was mutated artificially to produce random variations. They generated the enzymes in the droplets and sorted them according to which ones were better at cleaving a specific toxin in the bloodstream. The results from a screen completed in one afternoon were equivalent to those previously obtained through several rounds of mutation and screening – a several-month process.

Elizabeth McCrocklin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>