Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WOWing the crowds

07.02.2006


A team of scientists at the Weizmann Institute of Science and the Hebrew University of Jerusalem has developed a method that could speed up the process of identifying novel protein molecules for medical or biological research hundreds of times over.

In today’s high-throughput searches for specific genes, proteins or protein interactions, plates containing rows of tiny wells have replaced old-fashioned test tubes. However, trawling for a gene or protein with just the right qualifications may require sorting through millions, or even billions, of possibilities. Instead of wells, the new method, developed by Dr. Dan Tawfik and Amir Aharoni of the Institute’s Biological Chemistry Department and Prof. Shlomo Magdassi of the Hebrew University’s Institute of Chemistry with support from the Israel Ministry of Science and Technology, relies on microscopic droplets of water suspended inside oil droplets. Using their system, millions of tests can be performed at once.

The method, which relies on a type of emulsion dubbed WOW, for water-oil-water, takes a page from living cells, which employ a fatty membrane to keep the inside and outside environments separate. The oily layer surrounding each miniscule water droplet acts as a barrier, keeping genes, proteins and other materials contained. Alternately, the team inserted harmless bacteria containing genes for testing into the drops. Confining individual tests within a cell-like bubble allowed them to employ a widely-used method for analyzing living cells. This method involves adding a fluorescent marker that lights up in color when activated by the right protein and sorting through the cells for those containing the marked proteins and their coding genes. Automated devices for sorting cells can handle many thousands of droplets per second. "Searches that now take a year to complete can be done in a matter of days," says Tawfik.



To demonstrate the efficiency of the system, the team isolated a new enzyme from a gene that was mutated artificially to produce random variations. They generated the enzymes in the droplets and sorted them according to which ones were better at cleaving a specific toxin in the bloodstream. The results from a screen completed in one afternoon were equivalent to those previously obtained through several rounds of mutation and screening – a several-month process.

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann-usa.org/site/PageServer?pagename=index

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>