Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ironing Out New Details of Tuberculosis Infection

07.02.2006


Organization of two mbt clusters involved in the biosynthesis of lipophilic mycobactins. Illustration: Tarun Chopra


Scientists in India, led by a Howard Hughes Medical Institute (HHMI) international research scholar, have identified five key genes that enable Mycobacterium tuberculosis to acquire the iron it needs to sustain growth and promote infection.

“Targeting genes within this cluster represents a good strategy for preventing tuberculosis and other mycobacterial infections,” said Rajesh S. Gokhale, an HHMI international research scholar at the National Institute of Immunology in New Delhi, India, and lead investigator on the study. “Because some of these genes are conserved across a number of related bacterial families, they are promising targets for drugs to treat TB and other bacterial diseases.”

The tuberculosis bacterium, which infects more than one third of the world’s inhabitants, is a leading cause of death and disease worldwide.



Gokhale and colleagues report their findings in early online publication January 30, 2006, in the Proceedings of the National Academy of Sciences.

When M. tuberculosis infects humans, it takes up residence in immune cells called macrophages. To survive in this harsh environment, mycobacteria, like many other types of bacteria, need iron to carry out life-sustaining functions, such as creating proteins and synthesizing nucleotides to form DNA. However, free iron is not easily found in an intracellular environment. To obtain this rare element, most bacteria manufacture and secrete chemical compounds called siderophores that scavenge iron from the environment.

Researchers discovered siderophores—chemical compounds used by bacteria to scavenge iron from their cellular environment—well over 50 years ago, but the genes involved in adding the long-chain lipid anchor that enables M. tuberculosis to do so more efficiently, remained a mystery until now.

Mycobacteria have evolved siderophores with lipid-chain tails that enable them to exploit the macrophage’s lipid-trafficking system to capture iron more efficiently. Instead of using siderophores that diffuse freely, mycobacteria anchor their siderophores to lipid membranes by means of a long fatty acid tail. After these siderophores bind to iron within the macrophage, the lipid tail makes the iron “sticky” enough to permit delivery to the very compartment in macrophages where the mycobacteria are lurking.

Using microarray data, the available literature, and intuition, Gokhale’s group identified the location of the four genes that produce the lipid tail after observing that the expression of the genes significantly increased in response to low iron concentrations. The gene required for the synthesis of the siderophore core, called mbt-1, functions the same way, so Gokhale’s team named the new locus mbt-2 and the new genes mbtK, mbtL, mbtM, and mbtN.

“Now that the major siderophore genes and their functions have been defined, understanding the biosynthetic pathway provides an opportunity to develop small-molecule inhibitors with the potential for developing anti-tuberculosis drugs,” said Gokhale. His team has already determined that some of genes from the mbt-2 cluster is conserved across several other bacterial species that cause various pulmonary, skin, and organ diseases. Since the mbt-1 genes are also conserved across many bacterial families, the mbt genes appear to be ideal antibacterial targets for treating tuberculosis and other bacterial infections, he said.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org
http://www.hhmi.org/news/gokhale20060202.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>