Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ironing Out New Details of Tuberculosis Infection

07.02.2006


Organization of two mbt clusters involved in the biosynthesis of lipophilic mycobactins. Illustration: Tarun Chopra


Scientists in India, led by a Howard Hughes Medical Institute (HHMI) international research scholar, have identified five key genes that enable Mycobacterium tuberculosis to acquire the iron it needs to sustain growth and promote infection.

“Targeting genes within this cluster represents a good strategy for preventing tuberculosis and other mycobacterial infections,” said Rajesh S. Gokhale, an HHMI international research scholar at the National Institute of Immunology in New Delhi, India, and lead investigator on the study. “Because some of these genes are conserved across a number of related bacterial families, they are promising targets for drugs to treat TB and other bacterial diseases.”

The tuberculosis bacterium, which infects more than one third of the world’s inhabitants, is a leading cause of death and disease worldwide.



Gokhale and colleagues report their findings in early online publication January 30, 2006, in the Proceedings of the National Academy of Sciences.

When M. tuberculosis infects humans, it takes up residence in immune cells called macrophages. To survive in this harsh environment, mycobacteria, like many other types of bacteria, need iron to carry out life-sustaining functions, such as creating proteins and synthesizing nucleotides to form DNA. However, free iron is not easily found in an intracellular environment. To obtain this rare element, most bacteria manufacture and secrete chemical compounds called siderophores that scavenge iron from the environment.

Researchers discovered siderophores—chemical compounds used by bacteria to scavenge iron from their cellular environment—well over 50 years ago, but the genes involved in adding the long-chain lipid anchor that enables M. tuberculosis to do so more efficiently, remained a mystery until now.

Mycobacteria have evolved siderophores with lipid-chain tails that enable them to exploit the macrophage’s lipid-trafficking system to capture iron more efficiently. Instead of using siderophores that diffuse freely, mycobacteria anchor their siderophores to lipid membranes by means of a long fatty acid tail. After these siderophores bind to iron within the macrophage, the lipid tail makes the iron “sticky” enough to permit delivery to the very compartment in macrophages where the mycobacteria are lurking.

Using microarray data, the available literature, and intuition, Gokhale’s group identified the location of the four genes that produce the lipid tail after observing that the expression of the genes significantly increased in response to low iron concentrations. The gene required for the synthesis of the siderophore core, called mbt-1, functions the same way, so Gokhale’s team named the new locus mbt-2 and the new genes mbtK, mbtL, mbtM, and mbtN.

“Now that the major siderophore genes and their functions have been defined, understanding the biosynthetic pathway provides an opportunity to develop small-molecule inhibitors with the potential for developing anti-tuberculosis drugs,” said Gokhale. His team has already determined that some of genes from the mbt-2 cluster is conserved across several other bacterial species that cause various pulmonary, skin, and organ diseases. Since the mbt-1 genes are also conserved across many bacterial families, the mbt genes appear to be ideal antibacterial targets for treating tuberculosis and other bacterial infections, he said.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org
http://www.hhmi.org/news/gokhale20060202.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>