Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ironing Out New Details of Tuberculosis Infection

07.02.2006


Organization of two mbt clusters involved in the biosynthesis of lipophilic mycobactins. Illustration: Tarun Chopra


Scientists in India, led by a Howard Hughes Medical Institute (HHMI) international research scholar, have identified five key genes that enable Mycobacterium tuberculosis to acquire the iron it needs to sustain growth and promote infection.

“Targeting genes within this cluster represents a good strategy for preventing tuberculosis and other mycobacterial infections,” said Rajesh S. Gokhale, an HHMI international research scholar at the National Institute of Immunology in New Delhi, India, and lead investigator on the study. “Because some of these genes are conserved across a number of related bacterial families, they are promising targets for drugs to treat TB and other bacterial diseases.”

The tuberculosis bacterium, which infects more than one third of the world’s inhabitants, is a leading cause of death and disease worldwide.



Gokhale and colleagues report their findings in early online publication January 30, 2006, in the Proceedings of the National Academy of Sciences.

When M. tuberculosis infects humans, it takes up residence in immune cells called macrophages. To survive in this harsh environment, mycobacteria, like many other types of bacteria, need iron to carry out life-sustaining functions, such as creating proteins and synthesizing nucleotides to form DNA. However, free iron is not easily found in an intracellular environment. To obtain this rare element, most bacteria manufacture and secrete chemical compounds called siderophores that scavenge iron from the environment.

Researchers discovered siderophores—chemical compounds used by bacteria to scavenge iron from their cellular environment—well over 50 years ago, but the genes involved in adding the long-chain lipid anchor that enables M. tuberculosis to do so more efficiently, remained a mystery until now.

Mycobacteria have evolved siderophores with lipid-chain tails that enable them to exploit the macrophage’s lipid-trafficking system to capture iron more efficiently. Instead of using siderophores that diffuse freely, mycobacteria anchor their siderophores to lipid membranes by means of a long fatty acid tail. After these siderophores bind to iron within the macrophage, the lipid tail makes the iron “sticky” enough to permit delivery to the very compartment in macrophages where the mycobacteria are lurking.

Using microarray data, the available literature, and intuition, Gokhale’s group identified the location of the four genes that produce the lipid tail after observing that the expression of the genes significantly increased in response to low iron concentrations. The gene required for the synthesis of the siderophore core, called mbt-1, functions the same way, so Gokhale’s team named the new locus mbt-2 and the new genes mbtK, mbtL, mbtM, and mbtN.

“Now that the major siderophore genes and their functions have been defined, understanding the biosynthetic pathway provides an opportunity to develop small-molecule inhibitors with the potential for developing anti-tuberculosis drugs,” said Gokhale. His team has already determined that some of genes from the mbt-2 cluster is conserved across several other bacterial species that cause various pulmonary, skin, and organ diseases. Since the mbt-1 genes are also conserved across many bacterial families, the mbt genes appear to be ideal antibacterial targets for treating tuberculosis and other bacterial infections, he said.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.hhmi.org
http://www.hhmi.org/news/gokhale20060202.html

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>