Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple code

06.02.2006


Is there a universal neural code for sensation, similar to the genetic code, in which the complexity of sense and experience can be reduced to a few simple rules? According to Prof. Ehud Ahissar of the Weizmann Institute’s Neurobiology Department, the answer might be no. He and his team have been studying how rats use their whiskers to sense their environment, and have found that the seemingly simple act of feeling out a 3-D object requires three different types of code.



Rats’ whiskers are highly developed sense organs in the normally nocturnal animals. To get a fix on their surroundings, rats whisk their whiskers back and forth as they move. Researchers had previously shown that whisking is crucial to the act of sensing, but how does the rat’s brain map out a three-dimensional object using this movement?

Sensing begins in the neurons at the whiskers’ bases, which then fire signals off to the brain. The scientists, Marcin Szwed, Knarik Bagdasarian and Ahissar, found that in perceiving each of the three dimensions in the rat’s immediate surroundings – the horizontal, the vertical, and the radial (distance from the whisker base) – the neurons encode information in a completely different form. To sense the horizontal, for instance, the neurons fire with exact temporal precision and the timing of these signals relative to the whisking motion encodes the horizontal placement of an object. The radial, on the other hand, is encoded in quantity, specifically the number of times the neurons fire. The closer an object was to the rat’s snout, the higher the number of neuron-signaling spikes the team recorded. Height seems to be sensed through spacing: Since whisking only takes place in the horizontal plane, the researchers concluded that information about the vertical dimensions of an object is mapped out in the vertical placement of the whiskers, which are arranged grid-like on either side of the snout.


In addition to finding different codes for each dimension, the researchers noted that the nerve cells at the whiskers’ bases seemed to be specialized for the different kinds of encoding. Now the team plans to continue following the whiskers’ signals to find out how the brain interprets all three signals and melds them into one percept.

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann-usa.org/site/PageServer?pagename=index

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>