Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple code

06.02.2006


Is there a universal neural code for sensation, similar to the genetic code, in which the complexity of sense and experience can be reduced to a few simple rules? According to Prof. Ehud Ahissar of the Weizmann Institute’s Neurobiology Department, the answer might be no. He and his team have been studying how rats use their whiskers to sense their environment, and have found that the seemingly simple act of feeling out a 3-D object requires three different types of code.



Rats’ whiskers are highly developed sense organs in the normally nocturnal animals. To get a fix on their surroundings, rats whisk their whiskers back and forth as they move. Researchers had previously shown that whisking is crucial to the act of sensing, but how does the rat’s brain map out a three-dimensional object using this movement?

Sensing begins in the neurons at the whiskers’ bases, which then fire signals off to the brain. The scientists, Marcin Szwed, Knarik Bagdasarian and Ahissar, found that in perceiving each of the three dimensions in the rat’s immediate surroundings – the horizontal, the vertical, and the radial (distance from the whisker base) – the neurons encode information in a completely different form. To sense the horizontal, for instance, the neurons fire with exact temporal precision and the timing of these signals relative to the whisking motion encodes the horizontal placement of an object. The radial, on the other hand, is encoded in quantity, specifically the number of times the neurons fire. The closer an object was to the rat’s snout, the higher the number of neuron-signaling spikes the team recorded. Height seems to be sensed through spacing: Since whisking only takes place in the horizontal plane, the researchers concluded that information about the vertical dimensions of an object is mapped out in the vertical placement of the whiskers, which are arranged grid-like on either side of the snout.


In addition to finding different codes for each dimension, the researchers noted that the nerve cells at the whiskers’ bases seemed to be specialized for the different kinds of encoding. Now the team plans to continue following the whiskers’ signals to find out how the brain interprets all three signals and melds them into one percept.

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann-usa.org/site/PageServer?pagename=index

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>