Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables gene disruption in destructive fungal pathogen

03.02.2006


Researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech, Colorado State University, and Duke University Medical Center have developed a new method to determine gene function on a genome-wide scale in the fungal pathogen Alternaria brassicicola. This destructive fungus causes black spot disease, leading to considerable leaf loss in such economically important crops as canola, cabbage, and broccoli.



Genomic methods that allow the disruption of several thousand genes are needed because they allow high-throughput identification of genes and gene function. Such procedures are widely applicable and would be extremely useful in allowing scientists to investigate the key events that occur when a host interacts with a pathogen.

"The development of this protocol is timely as the genome sequence of A. brassicicola is scheduled for completion in 2006. We now have in our hands a versatile method that will allow us to dissect the pathogen’s nucleotide sequence information and establish the function of many of the individual genes in this filamentous fungus," said Christopher Lawrence, associate professor at VBI, director of the project, and one of the authors of the study.


"A. brassicicola has consistently been used in studies with the weedy mustard plant Arabidopsis. The genome sequence of Arabidopsis was determined in 2001 and many methods are available to ascertain gene function in this plant," Lawrence said. "We now have a means to identify key fungal and plant genes that interact and ultimately lead to disease development or resistance. This is an extremely powerful research tool."

The generation of gene disruption mutants has been a limiting step for the analysis of gene function in most filamentous fungi. The new method takes advantage of a novel linear DNA construct that greatly improves the efficiency of targeted gene disruption. The DNA construct includes an antibiotic-resistance marker gene, which allows for easy selection of the new mutants, as well as a short partial target gene that integrates and disrupts genes in the pathogen’s genome.

Richard Oliver, director of the Australian Centre for Necrotrophic Fungal Pathogens and professor of Molecular Plant Pathology at Murdoch University, Perth, commented: "The new disruption method looks highly promising as a tool for functional genomic studies. The authors looked at over 20 genes and were able to produce transformants and inactivated genes or knock-outs in each experiment. In most cases, the efficiency of gene disruption was 100 percent, which represents a considerable improvement over previously reported methods and makes large-scale functional analysis of individual genes feasible."

Yangrae Cho of VBI, lead scientist and author of the paper, said, "The high throughput system described in this study should allow for the systematic analysis of large sets of candidate genes in A. brassicicola, such as those encoding cell-wall-degrading enzymes and other genes of interest in pathogen-plant interactions."

The new gene disruption method may also find applications in the study of fungal pathogens that directly impact humans and human health. In addition to causing numerous plant diseases, Alternaria are involved in the development of such chronic airway diseases as asthma, allergy and chronic rhinosinusitis. Gene disruption methods could help in identifying molecules from the fungus that trigger inflammatory and other types of immune responses in humans. By understanding how fungi modulate immune responses in humans, new ways of developing therapeutics for these conditions could be identified.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>