Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables gene disruption in destructive fungal pathogen

03.02.2006


Researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech, Colorado State University, and Duke University Medical Center have developed a new method to determine gene function on a genome-wide scale in the fungal pathogen Alternaria brassicicola. This destructive fungus causes black spot disease, leading to considerable leaf loss in such economically important crops as canola, cabbage, and broccoli.



Genomic methods that allow the disruption of several thousand genes are needed because they allow high-throughput identification of genes and gene function. Such procedures are widely applicable and would be extremely useful in allowing scientists to investigate the key events that occur when a host interacts with a pathogen.

"The development of this protocol is timely as the genome sequence of A. brassicicola is scheduled for completion in 2006. We now have in our hands a versatile method that will allow us to dissect the pathogen’s nucleotide sequence information and establish the function of many of the individual genes in this filamentous fungus," said Christopher Lawrence, associate professor at VBI, director of the project, and one of the authors of the study.


"A. brassicicola has consistently been used in studies with the weedy mustard plant Arabidopsis. The genome sequence of Arabidopsis was determined in 2001 and many methods are available to ascertain gene function in this plant," Lawrence said. "We now have a means to identify key fungal and plant genes that interact and ultimately lead to disease development or resistance. This is an extremely powerful research tool."

The generation of gene disruption mutants has been a limiting step for the analysis of gene function in most filamentous fungi. The new method takes advantage of a novel linear DNA construct that greatly improves the efficiency of targeted gene disruption. The DNA construct includes an antibiotic-resistance marker gene, which allows for easy selection of the new mutants, as well as a short partial target gene that integrates and disrupts genes in the pathogen’s genome.

Richard Oliver, director of the Australian Centre for Necrotrophic Fungal Pathogens and professor of Molecular Plant Pathology at Murdoch University, Perth, commented: "The new disruption method looks highly promising as a tool for functional genomic studies. The authors looked at over 20 genes and were able to produce transformants and inactivated genes or knock-outs in each experiment. In most cases, the efficiency of gene disruption was 100 percent, which represents a considerable improvement over previously reported methods and makes large-scale functional analysis of individual genes feasible."

Yangrae Cho of VBI, lead scientist and author of the paper, said, "The high throughput system described in this study should allow for the systematic analysis of large sets of candidate genes in A. brassicicola, such as those encoding cell-wall-degrading enzymes and other genes of interest in pathogen-plant interactions."

The new gene disruption method may also find applications in the study of fungal pathogens that directly impact humans and human health. In addition to causing numerous plant diseases, Alternaria are involved in the development of such chronic airway diseases as asthma, allergy and chronic rhinosinusitis. Gene disruption methods could help in identifying molecules from the fungus that trigger inflammatory and other types of immune responses in humans. By understanding how fungi modulate immune responses in humans, new ways of developing therapeutics for these conditions could be identified.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>