Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Partner proteins may help estrogen foster breast cancer

03.02.2006


A new study suggests that the hormone estrogen works in partnership with other proteins to activate or suppress gene activity in breast cancer cells.



Surprisingly, one of the partner proteins is known as c-MYC, a gene activator that has long been associated with cancer development but was not known to interact with estrogen during tumor progression.

The study, by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, answers the puzzling question of how estrogen can turn on some genes and turn off others during cancer progression.


“Our results indicate that the interaction of estrogen with one of seven different partner proteins determines whether the gene is activated or suppressed,” says coauthor Ramana V. Davuluri, assistant professor of bioinformatics and computational biology.

The findings could also reveal potential new drug targets and lead to a test to identify breast-cancer patients with tumors that are likely to become resistant to hormonal therapies such as tamoxifen and aromatase inhibitors.

The research is published in the Feb. 3 issue of the journal Molecular Cell.

The study is unusual because it used microarray technology and mathematical modeling to predict which cell proteins work with estrogen to contribute to breast cancer development, and then used more traditional experimental biology to verify one of the predictions.

“We conducted this study with almost equal contributions from computational scientists and experimental scientists,” says principal investigator and corresponding author Tim Hui-Ming Huang, professor of human cancer genetics.

“This strategy, in which computational predictions are verified by the bench scientist, will be a trend for future cancer research,” Huang says.

Scientists have known for decades that estrogen plays a key role in the development of cancers of the breast, uterus and ovaries. Upon entering cells in these tissues, the molecules of the hormone first link with a molecule known as the estrogen receptor (ER), activating the ER.

The activated ER then links with, or binds to, genes and turns some on and some off.

For this study, Huang, Davuluri and their colleagues first needed to identify the genes that ERs will bind with. They did this using microarray, or gene-chip, technology. Gene chips allow scientists to compare thousands of genes at one time to learn which ones are turned on or turned off in cells under particular conditions, such as exposure to estrogen.

Specifically, the researchers used a form of this technology known as the Chromatin Immunoprecipitation chip, or the ChIP-chip. From this, they learned that ER would bind with 92 genes out of some 10,000 genes tested.

Of these 92, about 40 were strongly activated by the hormone and about 30 were strongly suppressed. The researchers focused on these two groups.

Proteins that bind to DNA do so by linking to specific DNA sequences in a particular region of a gene. The researchers then identified these sequences for each gene in the two groups using a pubic DNA database.

Next, they used that sequence information to write a computer program that scanned a different database, one containing information for the 5,000 or so proteins that are known to bind with DNA.

Of these, the program identified five partner proteins that should bind to one of the genes activated by ER, and two partner proteins that would bind to genes suppressed by ER.

In this way, they investigators computationally identified seven partner proteins that help ER activate or suppress gene activity in breast-cancer cells. And one of the activating partner proteins was c-MYC.

But were the computational predictions right or wrong? The researchers answered that question for the most important prediction, that c-MYC is an ER partner protein.

This work, by Huang and a group of colleagues, used laboratory-grown breast-cancer cells. They learned, for example, that if either the ER binding site or the c-MYC binding site of a particular gene is lost, estrogen will no longer activate the gene.

Next, the researchers will study how the interaction between ER and its partner proteins is changed in cells from tamoxifen-resistant tumors.

Funding from the National Cancer Institute supported this research.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>