Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging Cells, Aging Body: Fresh Evidence for a Connection

03.02.2006


When cells age and stop dividing, how much do they contribute to whole-body aging? Brown University research strengthens the case for a strong connection by providing evidence that non-dividing or “replicatively senescent” cells can be found in large numbers in old animals. The research, led by John Sedivy, is the first to quantify the presence of these cells in any species. Results are published by Science.


Markers for replicative senescence - The presence of biomarkers, or biological “red flags,” for old, non-dividing cells in baboons increases dramatically with age. This finding, from the lab of Brown biologist John Sedivy, bolsters the theory that replicative aging on a cellular level contributes to aging in whole organisms – including humans.



Brown University biologists have uncovered intriguing evidence to support the theory that old cells help make old bodies. In a study of baboons, scientists showed that as these animals age, the number of aging cells in their skin significantly increases.

Over time, cells lose their ability to divide, a state known as replicative senescence. The new research, published in an advanced online edition of Science, is the first to quantify the presence of replicatively senescent cells in any species.


“For 40 years, we’ve known about replicative senescence,” said John Sedivy, a Brown professor of medical science and the senior scientist on the project. “Whether it promotes the aging of our bodies, however, is highly controversial. While it may make intuitive sense, skeptics say ‘Show us the evidence.’ The first solid evidence is in this study. These initial findings won’t settle the debate, but they make a strong case.”

Human cells replicate anywhere from 60 to 90 times before senescence sets in, a phenomenon scientists believe is a safeguard against disease. While senescent cells still function, they don’t behave the way young cells do – and are associated with skin wrinkles, delayed wound healing, weakened immune system response and age-related diseases such as cancer.

“There is good evidence that senescent cells are not benign,” Sedivy said. “But until now, no one has been able to confirm that they exist in appreciable numbers in old animals.”

So the Brown team began to study aging animals – baboons living on a research preserve that ranged in age from 5 to 30. In human years, that age range is roughly 15 to 90.

Veterinarians took small skin samples from the monkeys’ forearms. Scientists in the Sedivy lab tested the connective tissue for the presence of six biomarkers, or biological “red flags,” that signal cellular aging. For replicative senescence, the most important biomarker is telomere dysfunction-induced foci, or TIFs. Presence of these structures signals that the protective chromosome caps called telomeres have dwindled enough to halt cell division.

Scientists painstakingly counted the cells with aging biomarkers. What they found: The number of senescent cells increased exponentially with age. TIF-positive cells made up about 4 percent of the connective tissue cell population in 5-year-olds. In 30-year-olds, that number rose as high as 20 percent.

Director of the Center for Genomics and Proteomics at Brown, Sedivy now plans to track the presence of TIFs in muscle and blood vessels.

“This research confirms that telomeres are important in aging,” he said. “But we’ve only scratched the surface. Now that we’ve come up with the tools and methods for further TIF research, I am eager to see if the same patterns play out in other tissue.”

Brown post-doctoral research fellow Utz Herbig is the lead author of the article. Brown undergraduate Mark Ferreira rounds out the Brown research team. Laura Condel and Dee Carey from the Southwest Foundation for Biomedical Research also contributed.

The National Institute on Aging funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>