Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolution mystery: Spider venom and bacteria share same toxin


It’s a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders and a bacterium. But the mystery remains as how the toxin passed between the two organisms. Their research is published this month in the journal Bioinformatics, 22(3): 264-268, in an article titled "Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria."

"We are piecing together an historical puzzle with evidence from living descendants of an ancient ancestor," said Greta Binford, assistant professor of biology at Lewis & Clark. Her coresearcher on the project is Matthew Cordes, assistant professor of biochemistry and molecular biophysics at the University of Arizona. The toxin is uniquely found in the venom cocktail of brown or violin spiders, including the brown recluse, and in some Corynebacteria. The toxin from the spider’s venom can kill flesh at the bite site; the bacterium causes various illnesses in farm animals.

"Our research was inspired by the fact that we have a group of spiders with a unique toxin, and that toxin also happens to exist outside the animal kingdom in this particular bacterium," she added. "A pattern like this raises the possibility of lateral gene transfer as a explanation." Lateral gene transfer refers to the movement of genes between the genomes of unrelated organisms. This contrasts with vertical transfer of genes from parent to offspring.

Cordes and Binford found a common structural motif at the end of both toxic proteins that is not found in any other proteins. Evidence for common ancestry (homology) of the toxins had previously been noted, but this uniquely shared structural bit is best explained by these toxins being more closely related to each other than they are to any other known protein.

"That one structural detail--which resembles a plug or cork at the end of a barrel-shaped enzyme--is evidence that the spider and bacterium share a relatively recent common ancestor," Cordes said. "Aside from being an example of lateral transfer between very distantly related organisms, this study is an unusual example of using structural motifs in proteins to answer questions about common ancestry when gene sequences are too different to be clear about these relationships."

"We’re still left with the question of whether this venom enzyme hopped species from the spider to the bacteria, or the other way around. Either way, the presence of this medically-relevant toxin in one of these groups of organisms is likely the result of transfer from the other lineage," Binford said. "Understanding the importance of this structural motif in the toxic activity may help with developing treatments that minimize the effects of bites of brown recluse and their relatives. If this motif is central to protein function, treatments designed for the spider bites may also work for treating problems caused by the corynebacterial toxin," she added.

Tania Thompson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>