Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution mystery: Spider venom and bacteria share same toxin

02.02.2006


It’s a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders and a bacterium. But the mystery remains as how the toxin passed between the two organisms. Their research is published this month in the journal Bioinformatics, 22(3): 264-268, in an article titled "Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria."


"We are piecing together an historical puzzle with evidence from living descendants of an ancient ancestor," said Greta Binford, assistant professor of biology at Lewis & Clark. Her coresearcher on the project is Matthew Cordes, assistant professor of biochemistry and molecular biophysics at the University of Arizona. The toxin is uniquely found in the venom cocktail of brown or violin spiders, including the brown recluse, and in some Corynebacteria. The toxin from the spider’s venom can kill flesh at the bite site; the bacterium causes various illnesses in farm animals.

"Our research was inspired by the fact that we have a group of spiders with a unique toxin, and that toxin also happens to exist outside the animal kingdom in this particular bacterium," she added. "A pattern like this raises the possibility of lateral gene transfer as a explanation." Lateral gene transfer refers to the movement of genes between the genomes of unrelated organisms. This contrasts with vertical transfer of genes from parent to offspring.

Cordes and Binford found a common structural motif at the end of both toxic proteins that is not found in any other proteins. Evidence for common ancestry (homology) of the toxins had previously been noted, but this uniquely shared structural bit is best explained by these toxins being more closely related to each other than they are to any other known protein.



"That one structural detail--which resembles a plug or cork at the end of a barrel-shaped enzyme--is evidence that the spider and bacterium share a relatively recent common ancestor," Cordes said. "Aside from being an example of lateral transfer between very distantly related organisms, this study is an unusual example of using structural motifs in proteins to answer questions about common ancestry when gene sequences are too different to be clear about these relationships."

"We’re still left with the question of whether this venom enzyme hopped species from the spider to the bacteria, or the other way around. Either way, the presence of this medically-relevant toxin in one of these groups of organisms is likely the result of transfer from the other lineage," Binford said. "Understanding the importance of this structural motif in the toxic activity may help with developing treatments that minimize the effects of bites of brown recluse and their relatives. If this motif is central to protein function, treatments designed for the spider bites may also work for treating problems caused by the corynebacterial toxin," she added.

Tania Thompson | EurekAlert!
Further information:
http://www.lclark.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>