Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular force field helps cancer cells defend against attack

02.02.2006


UF scientists find weakness in cancer’s armor



Much as the famed starship Enterprise would deploy a deflector shield to evade enemy attack, tumor cells are capable of switching on a molecular force field of their own to fend off treatments aimed at killing them. Now University of Florida researchers have found a chink in their armor.

The cells churn out an enzyme that bonds with a protein, creating a protective barrier that deflects damage from radiation or chemotherapy and promotes tumor cell survival. But in laboratory experiments, UF scientists were able to block the union, and the malignant cells died. The findings are opening new avenues of research that could lead to improved cancer therapies, the researchers report this week in the journal Cancer Research.


"We have found a gene called focal adhesion kinase which is produced at very high levels in human tumors, and our work has shown this makes the tumors more likely to survive as they spread throughout the body and grow," said William G. Cance, M.D., a researcher at the University of Florida Shands Cancer Center and chairman of the department of surgery at UF’s College of Medicine. "It also makes them more resistant to our attempts to kill them. And we’re trying to understand exactly why this gene, which is a small enzyme molecule, is very intimately associated with tumor cell survival."

Focal adhesion kinase, or FAK, is commanding increasing attention and has spawned a flurry of research designed to develop new drug therapies, said Cance, who is known internationally for his genetic investigations of tumor survival. These medicines would prevent FAK from linking with the protein known as vascular endothelial growth factor receptor 3, or VEGFR-3. The protein is tied to the growth of channels in the lymph system that serve as cellular superhighways for cancer spread and is found in breast, colon and thyroid tumors.

Cance and colleagues were the first to pull FAK out of human tumors and to show that human cancers make the molecule in large quantities. In 1996, the team was the first to show that if a tumor is prevented from producing the enzyme it dies. The scientists also have identified some protein receptors FAK binds to; VEGFR-3 is the latest they’ve discovered and represents a "hot area for developing therapeutics," Cance said.

"We’ve shown that if you disrupt this interaction - if you block the binding of these two proteins - the tumor cells are more prone to being killed," he said.

UF researchers identified FAK’s interaction with VEGFR-3 in cell cultures of human breast cancer. Breast cancers that pump out high volumes of FAK and VEGFR-3 are more aggressive tumors, Cance said. The scientists were able to block FAK from binding with VEGFR-3 by introducing a different protein that stopped cancer cells from dividing and caused them to die but spared normal breast cells.

"FAK is a critical molecule, and in the future different ways of targeting either the enzyme itself or targeting the binding between these various proteins will have a major impact on cancer, I believe," Cance said. "We think it’s one of the Achilles’ heels for tumor cells and you can disrupt it in a number of different ways. For example, we might be able to design drugs that mimic this area of binding and disrupt it in patients."

Because normal cells generate much lower levels of FAK than tumor cells do, treatments could be developed to target FAK and VEGFR-3 at dosages markedly less toxic to healthy tissues yet lethal to cancer.

"We have a therapeutic window," said Cance, the study’s senior investigator. "In normal cells we’ve shown you can knock it out and cells can still resist the loss of expression of focal adhesion kinase, whereas the tumor cells use it as one of their major proteins for survival."

UF surgical resident Christopher Garces, M.D., and UF research assistant professors Elena Kurenova, Ph.D., and Vita Golubovskaya, Ph.D., also were involved in the work, funded by the National Cancer Institute.

"We take our patients, we look at their tumors and we try to find clues to why their tumors grow, why their tumors spread, and we look at the various genes and proteins that make their tumors what they are," Cance said. "So from the patient’s standpoint, the more that we can characterize their tumor and understand why it behaves like it does, the greater chance we’ll then be able to go back to the patient with therapeutics, and that laboratory bench to bedside is what our research is all about."

H. Shelton Earp III, M.D., director of the Lineberger Comprehensive Cancer Center at the University of North Carolina-Chapel Hill, said, "The Cance lab finding follows on their groundbreaking work showing that human tumors survive in part by overexpressing FAK. This current discovery provides an important clue as to how to exploit this overexpression for the therapy of human cancers."

Steven Frisch, a professor of biochemistry and molecular pharmacology at West Virginia University, said the research raises "the compelling possibility of targeting FAK for a novel cancer therapy."

"FAK plays a major role in the survival of tumor cells in their normal attached state, and, when over-expressed or hyperactivated, it opens a molecular gate that allows tumor cells to detach and metastasize," Frisch said. "The Cance lab’s new observations on the VEGFR3-FAK interaction are both of interest for understanding the functions of these two pivotal molecules in cell behavior, as well as sharpening the focus of FAK-based drug discovery efforts to control cancer."

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>