Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular force field helps cancer cells defend against attack

02.02.2006


UF scientists find weakness in cancer’s armor



Much as the famed starship Enterprise would deploy a deflector shield to evade enemy attack, tumor cells are capable of switching on a molecular force field of their own to fend off treatments aimed at killing them. Now University of Florida researchers have found a chink in their armor.

The cells churn out an enzyme that bonds with a protein, creating a protective barrier that deflects damage from radiation or chemotherapy and promotes tumor cell survival. But in laboratory experiments, UF scientists were able to block the union, and the malignant cells died. The findings are opening new avenues of research that could lead to improved cancer therapies, the researchers report this week in the journal Cancer Research.


"We have found a gene called focal adhesion kinase which is produced at very high levels in human tumors, and our work has shown this makes the tumors more likely to survive as they spread throughout the body and grow," said William G. Cance, M.D., a researcher at the University of Florida Shands Cancer Center and chairman of the department of surgery at UF’s College of Medicine. "It also makes them more resistant to our attempts to kill them. And we’re trying to understand exactly why this gene, which is a small enzyme molecule, is very intimately associated with tumor cell survival."

Focal adhesion kinase, or FAK, is commanding increasing attention and has spawned a flurry of research designed to develop new drug therapies, said Cance, who is known internationally for his genetic investigations of tumor survival. These medicines would prevent FAK from linking with the protein known as vascular endothelial growth factor receptor 3, or VEGFR-3. The protein is tied to the growth of channels in the lymph system that serve as cellular superhighways for cancer spread and is found in breast, colon and thyroid tumors.

Cance and colleagues were the first to pull FAK out of human tumors and to show that human cancers make the molecule in large quantities. In 1996, the team was the first to show that if a tumor is prevented from producing the enzyme it dies. The scientists also have identified some protein receptors FAK binds to; VEGFR-3 is the latest they’ve discovered and represents a "hot area for developing therapeutics," Cance said.

"We’ve shown that if you disrupt this interaction - if you block the binding of these two proteins - the tumor cells are more prone to being killed," he said.

UF researchers identified FAK’s interaction with VEGFR-3 in cell cultures of human breast cancer. Breast cancers that pump out high volumes of FAK and VEGFR-3 are more aggressive tumors, Cance said. The scientists were able to block FAK from binding with VEGFR-3 by introducing a different protein that stopped cancer cells from dividing and caused them to die but spared normal breast cells.

"FAK is a critical molecule, and in the future different ways of targeting either the enzyme itself or targeting the binding between these various proteins will have a major impact on cancer, I believe," Cance said. "We think it’s one of the Achilles’ heels for tumor cells and you can disrupt it in a number of different ways. For example, we might be able to design drugs that mimic this area of binding and disrupt it in patients."

Because normal cells generate much lower levels of FAK than tumor cells do, treatments could be developed to target FAK and VEGFR-3 at dosages markedly less toxic to healthy tissues yet lethal to cancer.

"We have a therapeutic window," said Cance, the study’s senior investigator. "In normal cells we’ve shown you can knock it out and cells can still resist the loss of expression of focal adhesion kinase, whereas the tumor cells use it as one of their major proteins for survival."

UF surgical resident Christopher Garces, M.D., and UF research assistant professors Elena Kurenova, Ph.D., and Vita Golubovskaya, Ph.D., also were involved in the work, funded by the National Cancer Institute.

"We take our patients, we look at their tumors and we try to find clues to why their tumors grow, why their tumors spread, and we look at the various genes and proteins that make their tumors what they are," Cance said. "So from the patient’s standpoint, the more that we can characterize their tumor and understand why it behaves like it does, the greater chance we’ll then be able to go back to the patient with therapeutics, and that laboratory bench to bedside is what our research is all about."

H. Shelton Earp III, M.D., director of the Lineberger Comprehensive Cancer Center at the University of North Carolina-Chapel Hill, said, "The Cance lab finding follows on their groundbreaking work showing that human tumors survive in part by overexpressing FAK. This current discovery provides an important clue as to how to exploit this overexpression for the therapy of human cancers."

Steven Frisch, a professor of biochemistry and molecular pharmacology at West Virginia University, said the research raises "the compelling possibility of targeting FAK for a novel cancer therapy."

"FAK plays a major role in the survival of tumor cells in their normal attached state, and, when over-expressed or hyperactivated, it opens a molecular gate that allows tumor cells to detach and metastasize," Frisch said. "The Cance lab’s new observations on the VEGFR3-FAK interaction are both of interest for understanding the functions of these two pivotal molecules in cell behavior, as well as sharpening the focus of FAK-based drug discovery efforts to control cancer."

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>