Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers alleviate symptoms of Rett syndrome in mice

02.02.2006


Rett syndrome is a debilitating neurological disorder occurring primarily in girls. While some existing therapies might ease particular symptoms of the condition, there is no current way to address the syndrome at a molecular level. Now, researchers at Whitehead Institute for Biomedical Research, in collaboration with scientists at Brandeis University, have dramatically reduced certain manifestations of Rett Syndrome in mice, marking a clear path in which to explore possible therapies for people.



"This is the first time we’ve successfully reduced the awful symptoms of Rett syndrome using transgenic techniques," says Whitehead Member Rudolf Jaenisch, senior author of the paper that will be published February 2 in the journal Neuron. "Once we understand the molecular mechanisms of the disease we may be able to design rational strategies that may eventually be useful for the improving the condition in people."

Rett syndrome, whose incidence is roughly 1 in 15,000, is caused by a defective gene on the X chromosome. Most boys with Rett syndrome die before birth. Girls with Rett develop normally until about six to eighteen months, when things begin to go terribly wrong. Their health deteriorates, and they begin to show symptoms such as loss of speech, loss of voluntary motor control, constant hand wringing and seizures.


In March 2001, researchers in the Jaenisch lab published a paper in Nature Genetics describing how they had created the first mouse with Rett syndrome by disabling a gene called MeCP2. Normally, MeCP2 regulates the activities of other genes, particularly those in the brain. When it is shut off completely, the mice become lethargic and a major class of cortical neurons became far less active--classic symptoms of Rett.

In the fall of 2003, Jaenisch and researchers at Children’s Hospital Boston reported in the journal Science that MeCP2 interacted with a neuronal gene called Bdnf, a gene that’s highly active in infants age 6 to 18 months--the same age at which Rett symptoms first appear. But since this study was conducted using explanted neurons in a laboratory dish, researchers still had many unanswered questions about the role of Bdnf in Rett disease progression in mice.

Qiang Chang, a postdoctoral scientist in the Jaenisch lab, began to explore this issue by studying the population of the MeCP2 knock-out mice that Jaenisch had reported on in 2001. His first finding, gleaned through analyzing brain tissue, was not altogether unexpected: Mice without MeCP2 also showed low expression levels of the BDNF protein. In fact, Chang discovered that when he knocked out Bdnf altogether in normal mice, symptoms similar to those observed in the Rett mice occurred. But to discover whether or not these finding might have therapeutic relevance, Chang needed to engage in some complex genetic tinkering.

Chang inserted an additional Bdnf gene into the early embryos of the MeCP2 knock-out mice. He designed the gene so that it would be free of all normal regulatory mechanisms, in effect ensuring that it remains in a state of constant activity. In other words, while MeCP2 was permanently shut off, the new Bdnf was permanently switched on, and at maximum capacity.

This time, the findings were striking.

With BDNF hyper-expressed, Chang witnessed a drastic reduction in certain Rett symptoms. The mice were far less lethargic, and activity in the cortical neurons increased. These mice also had slightly larger brains, a longer lifespan and later onset of disease than the other Rett mice.

"The next step," says Chang, "is to figure out exactly why this is happening. Exactly how much BDNF expression in the mouse brain do you need to achieve these results, and where does it occur?"

"Knowing more about the process and about the precise areas of the brain that are affected will give us options for exploring future therapies," explains Jaenisch, who is also a professor of biology at MIT.

"We’re encouraged by these results," says Monica Coenraads, co-founder and director of research for Rett Syndrome Research Foundation, who helped support this work. "Should this prove to be therapeutically relevant, we look forward to participating in the transition from lab to clinic."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>