Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria early-warning system shows promise in tackling epidemics

02.02.2006


Climate forecasting systems help predict malaria risk in Africa

The Earth Institute at Columbia University—Malaria is one of the world’s biggest killers, taking the lives of more than 1 million people every year, as well as infecting a staggering 500 million worldwide. Although endemic in several regions of the world, malaria is most acute in Africa, home to an estimated 90 percent of all cases. Early warning systems can assist health programs and services in preventing and controlling the disease in epidemic-prone areas. A recent study shows that climate predictions can help provide health professionals and program managers with warnings of epidemics many months in advance. The study appears in the February 2 issue of Nature.

Climate variability has an important effect on malaria in epidemic-prone areas in Africa, where temperatures and rainfall drive both mosquito and parasite dynamics. In semi-arid Botswana, the National Malaria Control Programme has developed an early-warning system based on population vulnerability, rainfall, and health surveillance to predict and detect unusual changes in the seasonal pattern of disease. The risk of an epidemic in Botswana increases dramatically shortly after a season of good rainfall. Systems developed by the DEMETER project (http://www.ecmwf.int/research/demeter/) make forecasts of seasonal rainfall for much of southern Africa more reliable. An important influence on rainfall in this region is the El Niño/Southern Oscillation (ENSO) which impacts the occurrence of epidemic and non-epidemic years.



By using a number of climate models the researchers were able to consider the uncertainties in the predictions which could then be expressed reliably as probabilities. Overall, the researchers’ findings show that these probabilistic climate forecasts can be combined and used effectively in malaria forecasting. According to the study, these forecasts can provide health service managers with warnings of changes in epidemic risk five months before the peak malaria season and four months earlier than predictions based on actual rainfall. Following Botswana’s lead, integrated early warning systems are now being developed in conjunction with epidemic prevention and response planning activities, in a number of Southern African countries. "What we have demonstrated in this project, which makes it unique, is the speed at which cutting-edge climate research can be translated into operational activity in Africa," said Madeleine Thomson, research scientist at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University. "This happened because research activities were linked directly to the operational needs and policy objectives of both the climate and health institutions in the region."

"In Africa malaria causes over a million deaths each year—mostly in young children. In epidemic prone regions it is a much more indiscriminate cause of death,” said Dr Charles Delacollette, WHO Global Malaria Programme. “This study demonstrates that judicious use of climate information is an important factor in reducing the impact of this devastating disease."

The study involved researchers at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University; the European Centre for Medium-Range Weather Forecasts, the National Malaria Control Programme in Botswana, and the University of Liverpool. For a copy of the paper or for further information, please contact Ruth Francis, Senior Press Officer at Nature, at +44-20-7843-4562 or r.francis@nature.com.

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu
http://iri.columbia.edu
http://www.ecmwf.int/research/demeter/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>