Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria early-warning system shows promise in tackling epidemics

02.02.2006


Climate forecasting systems help predict malaria risk in Africa

The Earth Institute at Columbia University—Malaria is one of the world’s biggest killers, taking the lives of more than 1 million people every year, as well as infecting a staggering 500 million worldwide. Although endemic in several regions of the world, malaria is most acute in Africa, home to an estimated 90 percent of all cases. Early warning systems can assist health programs and services in preventing and controlling the disease in epidemic-prone areas. A recent study shows that climate predictions can help provide health professionals and program managers with warnings of epidemics many months in advance. The study appears in the February 2 issue of Nature.

Climate variability has an important effect on malaria in epidemic-prone areas in Africa, where temperatures and rainfall drive both mosquito and parasite dynamics. In semi-arid Botswana, the National Malaria Control Programme has developed an early-warning system based on population vulnerability, rainfall, and health surveillance to predict and detect unusual changes in the seasonal pattern of disease. The risk of an epidemic in Botswana increases dramatically shortly after a season of good rainfall. Systems developed by the DEMETER project (http://www.ecmwf.int/research/demeter/) make forecasts of seasonal rainfall for much of southern Africa more reliable. An important influence on rainfall in this region is the El Niño/Southern Oscillation (ENSO) which impacts the occurrence of epidemic and non-epidemic years.



By using a number of climate models the researchers were able to consider the uncertainties in the predictions which could then be expressed reliably as probabilities. Overall, the researchers’ findings show that these probabilistic climate forecasts can be combined and used effectively in malaria forecasting. According to the study, these forecasts can provide health service managers with warnings of changes in epidemic risk five months before the peak malaria season and four months earlier than predictions based on actual rainfall. Following Botswana’s lead, integrated early warning systems are now being developed in conjunction with epidemic prevention and response planning activities, in a number of Southern African countries. "What we have demonstrated in this project, which makes it unique, is the speed at which cutting-edge climate research can be translated into operational activity in Africa," said Madeleine Thomson, research scientist at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University. "This happened because research activities were linked directly to the operational needs and policy objectives of both the climate and health institutions in the region."

"In Africa malaria causes over a million deaths each year—mostly in young children. In epidemic prone regions it is a much more indiscriminate cause of death,” said Dr Charles Delacollette, WHO Global Malaria Programme. “This study demonstrates that judicious use of climate information is an important factor in reducing the impact of this devastating disease."

The study involved researchers at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University; the European Centre for Medium-Range Weather Forecasts, the National Malaria Control Programme in Botswana, and the University of Liverpool. For a copy of the paper or for further information, please contact Ruth Francis, Senior Press Officer at Nature, at +44-20-7843-4562 or r.francis@nature.com.

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu
http://iri.columbia.edu
http://www.ecmwf.int/research/demeter/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>