Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria early-warning system shows promise in tackling epidemics

02.02.2006


Climate forecasting systems help predict malaria risk in Africa

The Earth Institute at Columbia University—Malaria is one of the world’s biggest killers, taking the lives of more than 1 million people every year, as well as infecting a staggering 500 million worldwide. Although endemic in several regions of the world, malaria is most acute in Africa, home to an estimated 90 percent of all cases. Early warning systems can assist health programs and services in preventing and controlling the disease in epidemic-prone areas. A recent study shows that climate predictions can help provide health professionals and program managers with warnings of epidemics many months in advance. The study appears in the February 2 issue of Nature.

Climate variability has an important effect on malaria in epidemic-prone areas in Africa, where temperatures and rainfall drive both mosquito and parasite dynamics. In semi-arid Botswana, the National Malaria Control Programme has developed an early-warning system based on population vulnerability, rainfall, and health surveillance to predict and detect unusual changes in the seasonal pattern of disease. The risk of an epidemic in Botswana increases dramatically shortly after a season of good rainfall. Systems developed by the DEMETER project (http://www.ecmwf.int/research/demeter/) make forecasts of seasonal rainfall for much of southern Africa more reliable. An important influence on rainfall in this region is the El Niño/Southern Oscillation (ENSO) which impacts the occurrence of epidemic and non-epidemic years.



By using a number of climate models the researchers were able to consider the uncertainties in the predictions which could then be expressed reliably as probabilities. Overall, the researchers’ findings show that these probabilistic climate forecasts can be combined and used effectively in malaria forecasting. According to the study, these forecasts can provide health service managers with warnings of changes in epidemic risk five months before the peak malaria season and four months earlier than predictions based on actual rainfall. Following Botswana’s lead, integrated early warning systems are now being developed in conjunction with epidemic prevention and response planning activities, in a number of Southern African countries. "What we have demonstrated in this project, which makes it unique, is the speed at which cutting-edge climate research can be translated into operational activity in Africa," said Madeleine Thomson, research scientist at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University. "This happened because research activities were linked directly to the operational needs and policy objectives of both the climate and health institutions in the region."

"In Africa malaria causes over a million deaths each year—mostly in young children. In epidemic prone regions it is a much more indiscriminate cause of death,” said Dr Charles Delacollette, WHO Global Malaria Programme. “This study demonstrates that judicious use of climate information is an important factor in reducing the impact of this devastating disease."

The study involved researchers at the International Research Institute for Climate and Society, part of The Earth Institute at Columbia University; the European Centre for Medium-Range Weather Forecasts, the National Malaria Control Programme in Botswana, and the University of Liverpool. For a copy of the paper or for further information, please contact Ruth Francis, Senior Press Officer at Nature, at +44-20-7843-4562 or r.francis@nature.com.

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu
http://iri.columbia.edu
http://www.ecmwf.int/research/demeter/

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>