Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting Cells That Ensure Gene Balance

02.02.2006


Two are one too many – this is the motto used by cells of a female organism: These contain two X chromosomes, one of which always becomes inactivated. How does the cell recognize that it contains two of these sex chromosomes and how does it choose which one to turn off? Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), working together with French colleagues, have now been able to elucidate an early step in this complex process.



Forty-five years ago, British scientist Mary Lyon already described this chromosome inactivation typical of female cells. Lyon proposed a hypothesis: With two copies of the X chromosome, all X-linked genes are present in two copies. However, in a male organism, which is equipped with a set of one X and one Y chromosome, the X genes are present in only one copy in each cell. To restore genetic balance, a female cell inactivates one of its two X chromosomes.

During development of a female embryo, inactivation of either of the X chromosomes, the one inherited from the father or the one inherited from the mother, occurs at random. To coordinate inactivation, the cell first needs to determine whether it contains more than one X chromosome and then make a choice which of the two to switch off. Since the mid-1980s it has been known that a specific region of the X chromosome termed X inactivation center (Xic) is crucial for a correct inactivation process.


Professor Dr. Roland Eils, who leads the bioinformatics departments at the German Cancer Research Center and at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University, suspected that the spatial arrangement of the Xics within the nucleus is key to inactivation. Working together with colleagues of the Curie Institute, Paris, he searched different cells for distinctive features in the distribution of Xic regions. The scientists compared developing female embryonic stem cells of mice just before X inactivation, with mouse cells in which X inactivation had already taken place. Using a 3-dimensional visualization of fluorescent labels of the Xic regions, they observed that the Xics of both X chromosomes in the developing stem cells were located very close to each other in up to 15 percent of cells. In the comparative cell line, this was found in only about three percent of cells, which constitutes a random result. The formation of pairs (co-localization) was particularly noticeable in the stem cells after about one and a half days of development, i.e. shortly before X inactivation.

A specific loss of DNA (deletion) in the Xic region of one of the two X chromosomes prevents the pairing of Xics. In addition, cells that have forgotten how to count show no pairing at all. The scientist postulate that the pairing of Xic regions is a necessary prerequisite for correct chromosome counting, but they cannot give any information yet as to what kind of interaction there is between the two Xic regions during transient co-localization.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>