Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in the fight against bacterial infections

02.02.2006


Bacterial infections can strike anyone, and they can sometimes be fatal. Because more and more bacteria are becoming resistant to the pre-eminent remedy - antibiotics - the search for new remedies against bacterial infections is in high gear. Research by scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University shows that certain mice, by nature, can withstand particular bacterial infections. Elucidation of the biological process that underlies this natural ability offers perspectives for the development of new therapeutics.



A cascade of reactions protects us against infections

Most of the time, our body can overcome bacterial infections. Only a limited number of bacteria can make us sick, but sometimes they can be fatal. In the US, about 200,000 people die from bacterial infections each year. Normally, our natural immune system bars bacteria from entering our body, or it renders them harmless. The aggressiveness of the bacteria, our general state of health, and the speed with which our immune system reacts determine whether or not we become sick after contact with a bacterium.


Upon contact with a bacterium, or a bacterial component, the immune system springs into action. One such component of the bacterial cell wall is LPS. The binding of LPS with its specific receptor in our immune system - TLR4 - initiates a long series of reactions that bring on an inflammation, which eliminates the bacteria from our body. Of course, this chain of reactions is strictly controlled, because excessive inflammation can lead to lethal shock.

Mice that are able to cope with acute inflammations

Tina Mahieu and her colleagues from the research group led by Claude Libert are working with mice that are not susceptible to toxic LPS. The VIB researchers have discovered the mechanism behind this insensitivity.

One of the steps in the process of inflammation following contact with LPS is a profuse production of type 1 interferons. These proteins play an important role in the regulation of immunity. The Ghent researchers administered 10 times the lethal dose of LPS to the mutant mice, without deadly consequences. This finding could not be attributed to an alteration in TLR4, but to a reduced production of type 1 interferons. To verify this, Mahieu and her colleagues administered these interferons preventatively to the mice - which made the animals susceptible to LPS once again. Thus, this research shows that the mice are no longer able to produce large quantities of type 1 interferons - with the consequence that an inflammation fails to arise, demonstrating the importance of type 1 interferons to the inflammation process. On the other hand, the mice produce just enough interferons to activate the immune system against the bacteria, so that the mice are protected against bacterial infections.

Another step forward in the battle against bacterial infections

The results of this research are very relevant to the quest for new therapeutics for bacterial infections. The mutant mice display a combination of important characteristics: they are resistant to LPS, but they still recognize and destroy pathogens. The limited quantity of type 1 interferons enables the mice to cope with a lethal shock resulting from inflammation, but this small quantity also ensures that immunity is preserved. A next step in combating bacterial infections is to uncover the mechanism behind this reduced production.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>