Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in the fight against bacterial infections

02.02.2006


Bacterial infections can strike anyone, and they can sometimes be fatal. Because more and more bacteria are becoming resistant to the pre-eminent remedy - antibiotics - the search for new remedies against bacterial infections is in high gear. Research by scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University shows that certain mice, by nature, can withstand particular bacterial infections. Elucidation of the biological process that underlies this natural ability offers perspectives for the development of new therapeutics.



A cascade of reactions protects us against infections

Most of the time, our body can overcome bacterial infections. Only a limited number of bacteria can make us sick, but sometimes they can be fatal. In the US, about 200,000 people die from bacterial infections each year. Normally, our natural immune system bars bacteria from entering our body, or it renders them harmless. The aggressiveness of the bacteria, our general state of health, and the speed with which our immune system reacts determine whether or not we become sick after contact with a bacterium.


Upon contact with a bacterium, or a bacterial component, the immune system springs into action. One such component of the bacterial cell wall is LPS. The binding of LPS with its specific receptor in our immune system - TLR4 - initiates a long series of reactions that bring on an inflammation, which eliminates the bacteria from our body. Of course, this chain of reactions is strictly controlled, because excessive inflammation can lead to lethal shock.

Mice that are able to cope with acute inflammations

Tina Mahieu and her colleagues from the research group led by Claude Libert are working with mice that are not susceptible to toxic LPS. The VIB researchers have discovered the mechanism behind this insensitivity.

One of the steps in the process of inflammation following contact with LPS is a profuse production of type 1 interferons. These proteins play an important role in the regulation of immunity. The Ghent researchers administered 10 times the lethal dose of LPS to the mutant mice, without deadly consequences. This finding could not be attributed to an alteration in TLR4, but to a reduced production of type 1 interferons. To verify this, Mahieu and her colleagues administered these interferons preventatively to the mice - which made the animals susceptible to LPS once again. Thus, this research shows that the mice are no longer able to produce large quantities of type 1 interferons - with the consequence that an inflammation fails to arise, demonstrating the importance of type 1 interferons to the inflammation process. On the other hand, the mice produce just enough interferons to activate the immune system against the bacteria, so that the mice are protected against bacterial infections.

Another step forward in the battle against bacterial infections

The results of this research are very relevant to the quest for new therapeutics for bacterial infections. The mutant mice display a combination of important characteristics: they are resistant to LPS, but they still recognize and destroy pathogens. The limited quantity of type 1 interferons enables the mice to cope with a lethal shock resulting from inflammation, but this small quantity also ensures that immunity is preserved. A next step in combating bacterial infections is to uncover the mechanism behind this reduced production.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>