Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antlers could hold clues to stem cell research

02.02.2006


Research carried out by veterinary scientists at the Royal Veterinary College reveals that deer antler regeneration may use stem cells and involves similar mechanisms to those used in limb development. The research could take us towards a ‘holy grail’ in human medicine: the ability to restore organs damaged through trauma, disease, cancer or excision.

Many lower animals such as newts can renew damaged parts of their bodies but antler growth is the only example of mammals being able to regrow large complex organs.

Deer antlers are large structures made of bone that annually grow, die, are shed and then regenerate. Although dead tissue when used for fighting, during growth they consist of living bone, cartilage blood vessels and fibrous tissue covered in skin.



The research suggests that unlike the regenerative process in the newt, antler growth does not involve reversal of the differentiated state but is stem cell based. Antler growth appears to involve specific stimulation of the necessary stem cells present in the locality. If we can understand how deer have adapted the normal means of development, cell renewal and repair to redevelop a complete organ, it may be possible to achieve the same outcome in damaged human tissues.

The research also shows that developmental signaling pathways are important. ’Antler-specific’ molecules may not exist and growth may be a particular use of molecules that all mammals share. There is similarity in the signals used to stimulate antler growth and those used for other processes.

Antler shedding is triggered by a fall in the hormone testosterone, a hormonal change that is linked to an increase in day length. Although the antler growth cycle, from the shedding of the velvet skin and casting of the dead antler to regrowth, is closely linked to testosterone, oestrogen may be a key cellular regulator, as it is in the skeleton of other male mammals. Identifying how hormonal and environmental cues interact with local signalling pathways to control antler stem cell behaviour could have an important impact on human health, if this knowledge is applied to the engineering of new human tissues and organs.

Professor Joanna Price, who heads research on antler regeneration at the Royal Veterinary College, said “The regeneration of antlers remains one of the mysteries of biology but we are moving some way to understanding the mechanisms involved. Antlers provide us with a unique natural model that can help us understand the basic process of regeneration although we are still a long way from being able to apply this work to humans”.

Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is alive. Stem cell research can help develop therapies for diseases that do not have any treatment at the present time, and develop new approaches towards prevention and treatment of debilitating diseases affecting the nervous system and key organs, such as Parkinson’s.

Jenny Murray | alfa
Further information:
http://www.communicationsmanagement.co.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>