Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antlers could hold clues to stem cell research

02.02.2006


Research carried out by veterinary scientists at the Royal Veterinary College reveals that deer antler regeneration may use stem cells and involves similar mechanisms to those used in limb development. The research could take us towards a ‘holy grail’ in human medicine: the ability to restore organs damaged through trauma, disease, cancer or excision.

Many lower animals such as newts can renew damaged parts of their bodies but antler growth is the only example of mammals being able to regrow large complex organs.

Deer antlers are large structures made of bone that annually grow, die, are shed and then regenerate. Although dead tissue when used for fighting, during growth they consist of living bone, cartilage blood vessels and fibrous tissue covered in skin.



The research suggests that unlike the regenerative process in the newt, antler growth does not involve reversal of the differentiated state but is stem cell based. Antler growth appears to involve specific stimulation of the necessary stem cells present in the locality. If we can understand how deer have adapted the normal means of development, cell renewal and repair to redevelop a complete organ, it may be possible to achieve the same outcome in damaged human tissues.

The research also shows that developmental signaling pathways are important. ’Antler-specific’ molecules may not exist and growth may be a particular use of molecules that all mammals share. There is similarity in the signals used to stimulate antler growth and those used for other processes.

Antler shedding is triggered by a fall in the hormone testosterone, a hormonal change that is linked to an increase in day length. Although the antler growth cycle, from the shedding of the velvet skin and casting of the dead antler to regrowth, is closely linked to testosterone, oestrogen may be a key cellular regulator, as it is in the skeleton of other male mammals. Identifying how hormonal and environmental cues interact with local signalling pathways to control antler stem cell behaviour could have an important impact on human health, if this knowledge is applied to the engineering of new human tissues and organs.

Professor Joanna Price, who heads research on antler regeneration at the Royal Veterinary College, said “The regeneration of antlers remains one of the mysteries of biology but we are moving some way to understanding the mechanisms involved. Antlers provide us with a unique natural model that can help us understand the basic process of regeneration although we are still a long way from being able to apply this work to humans”.

Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is alive. Stem cell research can help develop therapies for diseases that do not have any treatment at the present time, and develop new approaches towards prevention and treatment of debilitating diseases affecting the nervous system and key organs, such as Parkinson’s.

Jenny Murray | alfa
Further information:
http://www.communicationsmanagement.co.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>