Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antlers could hold clues to stem cell research


Research carried out by veterinary scientists at the Royal Veterinary College reveals that deer antler regeneration may use stem cells and involves similar mechanisms to those used in limb development. The research could take us towards a ‘holy grail’ in human medicine: the ability to restore organs damaged through trauma, disease, cancer or excision.

Many lower animals such as newts can renew damaged parts of their bodies but antler growth is the only example of mammals being able to regrow large complex organs.

Deer antlers are large structures made of bone that annually grow, die, are shed and then regenerate. Although dead tissue when used for fighting, during growth they consist of living bone, cartilage blood vessels and fibrous tissue covered in skin.

The research suggests that unlike the regenerative process in the newt, antler growth does not involve reversal of the differentiated state but is stem cell based. Antler growth appears to involve specific stimulation of the necessary stem cells present in the locality. If we can understand how deer have adapted the normal means of development, cell renewal and repair to redevelop a complete organ, it may be possible to achieve the same outcome in damaged human tissues.

The research also shows that developmental signaling pathways are important. ’Antler-specific’ molecules may not exist and growth may be a particular use of molecules that all mammals share. There is similarity in the signals used to stimulate antler growth and those used for other processes.

Antler shedding is triggered by a fall in the hormone testosterone, a hormonal change that is linked to an increase in day length. Although the antler growth cycle, from the shedding of the velvet skin and casting of the dead antler to regrowth, is closely linked to testosterone, oestrogen may be a key cellular regulator, as it is in the skeleton of other male mammals. Identifying how hormonal and environmental cues interact with local signalling pathways to control antler stem cell behaviour could have an important impact on human health, if this knowledge is applied to the engineering of new human tissues and organs.

Professor Joanna Price, who heads research on antler regeneration at the Royal Veterinary College, said “The regeneration of antlers remains one of the mysteries of biology but we are moving some way to understanding the mechanisms involved. Antlers provide us with a unique natural model that can help us understand the basic process of regeneration although we are still a long way from being able to apply this work to humans”.

Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is alive. Stem cell research can help develop therapies for diseases that do not have any treatment at the present time, and develop new approaches towards prevention and treatment of debilitating diseases affecting the nervous system and key organs, such as Parkinson’s.

Jenny Murray | alfa
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>