Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells cure tendon damage- scientists get injured equine athletes back on their hooves with pioneering stem cell therapy

02.02.2006


Researchers have unraveled the potential of stem cells in the repair and treatment of damaged tendon tissue. Royal Veterinary College (RVC) spin-out company VetCell Bioscience Ltd, set to star on the BBC 1 fly on the wall series ’SuperVets’ on Thursday 3rd of February, is helping revolutionise veterinary, and now also human, medicine through stem cell technology.



The London Bioscience Innovation Centre based spin-out set up in 2002 by business consultant Greg McGarrell, CEO of VetCell, is going from strength to strength and has now successfully treated over 300 performance horses, such as racehorses, eventers and showjumpers.

Some of the most devastating injuries and diseases of performance horses are now treatable thanks to high tech stem cell therapy. Stem cells, for the first time, offer the prospect of a return to a fully functional tendon.


In the forthcoming instalment of ’SuperVets’ Zara, a lame thoroughbred cross with a core lesion, is treated with stem cell therapy.

Like human athletes, competitive horses are vulnerable to joint injuries, especially tendon. Performance horses, like human athletes, are often pushed to their limits and this can lead to tendon or ligament injury. Injury to tendons is healed by extensive scar tissue, which limits the tendon’s normal role. The scar tissue impairs movement and is stronger than normal tendon, so does not stretch in the same way as normal tendon. In turn, this is likely lead to further lameness.

But, using the new technique to reduce the scar tissue formation caused by injury, and even regenerate damaged tendons, which is notoriously difficult in horses, can lead to complete recovery. The stem cell treatment is unique as it uses tissues to grow more tendon-like cells.

VetCell is the leading provider of stem cell technology to the world of animal health. But, VetCell scientists are now working on revolutionary treatments to speed up human biological healing processes with stem cells. It is possible that similar repair mechanisms can be instituted in humans as well. The researchers are looking at ways that the technology can be transferred to humans to treat conditions that affect tendons and ligaments such as Achilles tendonitis, a painful and often debilitating inflammation of the Achilles tendon, which can make even walking impossible.

Greg McGarrell , CEO of VetCell Bioscience Ltd, said: “VetCell is a real zero to hero biotechnology company, we’ve built it up into one of the UK’s most successful biotechnology University spin-outs on a shoe string. We have a strong management team, which means that we’ve built a powerful company without wasting a penny.

“Our success is largely due to the cutting edge research at the Royal Veterinary College being combined with the knowledge of professional city people. This means that VetCell has had a commercial focus right from the start. While universities are keen to create spin-out companies, far too few of these become successful businesses. A key problem with spin-outs is that they lack good business management.”

Jenny Murray | alfa
Further information:
http://supervets.rvc.ac.uk
http://www.communicationsmanagement.co.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>