Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover link between high levels of HtrA1 protein

01.02.2006


Findings may lead to future predictive test for preeclampsia



Mayo Clinic researchers have found an association between abnormally high levels of a protein named HtrA1 and preeclampsia, a sudden and dangerous rise in blood pressure that can result in premature delivery, disability or death for mother and fetus. The condition, which affects 5 to 8 percent of pregnancies worldwide, constitutes a medical emergency and often requires a Caesarean section delivery. The condition is estimated to cause 50,000 to 76,000 maternal deaths each year.

The Mayo Clinic work is the first to link high levels of HtrA1 in third-trimester placental tissues with severe preeclampsia. The results will be reported at the Society for Maternal-Fetal Medicine annual meeting in Miami.


Though preliminary, the findings may one day lead to development of a blood test to track HtrA1 levels to identify women at risk of preeclampsia. Currently no predictive test exists for preeclampsia.

Notes Brian Brost, M.D., Mayo Clinic high-risk pregnancy specialist and senior study investigator, "It is certainly too early to say HtrA1 is a biomarker of preeclampsia, but the initial results are really encouraging, because the cause of this serious complication of pregnancy has not been well understood."

Funminiyi Ajayi, M.D., Mayo researcher and co-author of the paper, collected the placental samples and reviewed the results. "From a basic science point of view, this is an important contribution to understanding a complex series of events that we hope one day to be able to reverse or prevent," says Dr. Ajayi.

Significance of the Mayo Clinic Research

The Mayo Clinic researchers are the first to take two important steps toward developing a better understanding of preeclampsia. These "firsts" consist of:

1. Evaluating an association between preeclampsia and levels of HtrA1 found in placental tissues. The Mayo Clinic researchers tested levels of HtrA1 in specific cells of placentas obtained from women diagnosed with preeclampsia and compared these tissue samples to placentas from normal deliveries. Thirty placentas were evaluated. All placental pairs -- normal and preeclamptic -- were matched by gestational stage. Placentas were categorized in terms of the mother’s blood pressure as "normal," "mild preeclampsia" and "severe preeclampsia," according to accepted criteria set by the American College of Obstetricians and Gynecologists. Patients with underlying diseases -- such as diabetes -- that might alter blood pressure were not included in the study.

2. Documenting that the level of HtrA1 is altered in placental tissue from preeclamptic women. In the Mayo Clinic investigation, HtrA1 was found in higher amounts in third-trimester placentas of women with severe preeclampsia. Because greater amounts of HtrA1 indicate greater placental distress and disease severity, developing a blood test to detect levels of HtrA1 may possibly serve as an early warning system that placental conditions are changing. The hope is that such a predictive test would allow physicians to manage preeclampsia on a nonemergency basis when it is less threatening for mother and fetus, or possibly to devise therapies to stop the process or prevent it altogether, according to Dr. Brost.

Background Biology

Prior to the current Mayo Clinic investigation, the protein HtrA1 was known to be involved in programmed cell death, cell change and "invasiveness," the ability of cells to invade and colonize new areas. This process can be healthy -- as in establishing growth of a placenta in the uterus during the first trimester. Invasion also can be unhealthy -- as in the cases of cancer, another context in which the role of HtrA1 has been well studied.

In the Mayo Clinic investigation into HtrA1 and preeclampsia, findings suggest that the increased levels of HtrA1 impair correct functioning during the second stage of growth of key placental cells called cytotrophoblasts. Their job is to invade the uterus to establish the placenta. Just how HtrA1 does this is not known. One possibility is that its molecules "fit" into place in the molecular puzzle to activate abnormal growth. This is theoretically possible because HtrA1 molecules are structurally similar to other molecules, insulin-like growth factors (IGF) binding proteins, according to the Mayo Clinic researchers. Research has shown that an excess IGF binding protein disrupts the growth of cytotrophoblasts and also leads to the dysfunction of the placenta and impaired fetal growth.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>