Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic pathway that could lead to drugs for kidney disease

01.02.2006


Scientists at the University of California, Santa Barbara have reported a discovery at the cellular level that suggests possibilities for drug therapy for kidney disease.



Over 600,000 people in the U.S. are affected by the inherited kidney disease known as ADPKD, short for autosomal-dominant polycystic kidney disease. In the U.S. this is more than the number of individuals affected by cystic fibrosis, muscular dystrophy, hemophilia, Down’s syndrome, and sickle cell anemia combined. The disease is characterized by the proliferation of cysts that eventually debilitate the kidney, causing kidney failure in half of all patients by the time they reach age 50.

Currently no treatment exists to prevent or slow cyst formation, and most ADPKD patients require kidney transplants or life-long dialysis for survival, explained Thomas Weimbs, assistant professor of biology at UCSB and director of the lab that made the discovery, which was reported in the January issue of the journal Developmental Cell.


Kidney cells are lined with small hair-like cilia. The cilia sense fluid flow as urine is passed through the kidney and they send signals to the kidney cells that line the small canals –– called tubules. It is the loss of cilia function that leads to polycystic kidneys.

"With polycystic kidneys, these tubular cells think they have to repair an injury, and they ’repair’ by forming lots of cysts," said Weimbs.

The disease is triggered by polycystin-1, a large protein. If it mutates, then the mutation leads to polycystic kidney disease. Even though polycystin-1 was discovered more than a decade ago, its function has remained unknown.

In this study, Weimbs and his colleagues discovered that, under normal conditions, the polycystin-1 keeps certain parts of the cell localized in the cilia and away from the nucleus. These parts of the cell are known as transcription factors. If there is an injury the flow of urine stops, and the transcription factors migrate to the nucleus of the cell, signaling the cell to divide to replace those cells that have been lost. In patients with this disease the repair mechanism is always turned on because the polycystin-1 is defective, or mutated. The discovery of this pathway thus opens the door to possible drug therapy for the disease. This is because the inhibition of any step along this pathway should have beneficial effects. Weimbs and his team are currently capitalizing on these findings by testing drugs to specifically affect components of this novel pathway.

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>