Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing steps of jumping-gene replication discovered

01.02.2006


Findings illuminate how ’junk’ DNA accumulates in the human genome



In experiments with transgenic mice, University of Pennsylvania School of Medicine researchers discovered the remaining steps in the complicated process of how the largest class of jumping genes replicates and inserts themselves within the human genome. Haig H. Kazazian, Jr. MD, Chair of the Department of Genetics, and colleagues at Penn published their findings in the February issue of Genome Research. This knowledge may shed light on the origins of "junk" DNA, parts of the genome for which no function has yet been discovered.

Jumping genes–also called mobile DNA or transposons–are sequences of DNA that can move or jump to different areas of the genome within the same cell. They are a rare cause of several genetic diseases, such as hemophilia and Duchenne muscular dystrophy.


Retrotransposons are one class of jumping genes, with the L1 family being the most abundant in the human genome. Retrotransposons move by having their DNA sequence transcribed or copied to RNA, and then instead of the genetic code being translated directly into a protein sequence, the RNA is copied back to DNA by the retrotransposon’s own enzyme called reverse transcriptase. This new DNA is then inserted back into the genome. This process of copying is similar to that of retroviruses, such as HIV, leading scientists to speculate about a viral origin for retrotransposons.

"L1 retrotransposons, which are the only active mobile DNA elements in humans, have accounted for about 30 percent of the human genome by their own insertions and by driving the insertion of other kinds of elements," says Kazazian. "In fact, humans have over 500,000 L1 retrotransposons within an individual genome."

In order to learn about the effects of L1 retrotransposon insertions into the human genome, the researchers made a transgenic mouse in which human L1 retrotransposons could replicate. They injected several copies of a human L1 retrotransposon to create the transgenic mouse. In subsequent generations, the retrotransposons moved within the offsprings’ genomes and each new insertion could be detected by the investigators. The researchers characterized 51 new jumps of L1, finding that insertions landed in random genomic regions. Several L1 insertions included small pieces of extra DNA.

While tracing the origin of this extra DNA, Daria Babushok, an MD/PhD student in the Kazazian lab, came up with the missing steps in the mechanism of retrotransposon replication. "It was known previously that the enzyme endonuclease cleaves one of the strands of cellular DNA and then the retrotransposon inserts by binding to that cleaved DNA strand and copying itself onto that strand," she says. "It sneaks in there."

How the retrotransposon finally integrated and pasted itself back together was unknown, until this paper. "What we saw in our insertions hinted at the possibility that reverse transcriptase actually jumps onto the second DNA strand and continues the synthesis," she explains. "We think that this is how the second part of the element integrates into the genome. If this mechanism proves to be correct, it will bring us much closer to knowing how more than half a million retrotransposons have accumulated in the human genome."

Eventually, continuous jumping by retrotransposons expands the size of the human genome and may cause shuffling of genome content. For example, when retrotransposons jump, they may take portions of nearby gene sequences with them, inserting these where they land, and thereby allowing for the creation of new genes. Even otherwise unremarkable insertions of L1 may cause significant effects on nearby genes, such as lowering their expression.

Now, by knowing the final steps in retrotransposon replication and being able to follow and map new insertions in animals, the researchers will be able to more fully understand how L1 retrotransposons are able to invade the human genome.

"We were able to obtain a snapshot of a large number of new L1 jumps in a situation closely mimicking what occurs every day in the human genome," says Babushok. "Importantly, occasional small additions of extra DNA sequences at the ends of new L1 insertions gave us tantalizing leads to the L1 retrotransposon replication mechanism. We are very excited to follow this thread to confirm our proposed mechanism and to come closer to a complete understanding of the interaction between L1 retrotransposons and our genomes."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>