Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preimplantation cell number may affect birthweight

01.02.2006


Cells may vary in numbers per embryo, be uneven-sized or partially fragmented. Dr Lieberman et al. at the Department of Obstetrics, Gynaecology and Reproductive Biology at the Brigham and Women’s Hospital, Harvard Medical School in Boston, USA have measured the quality of human embryos by counting and assessing the properties of their individual cells. In their paper Rate of cell division and weight of neonates following in-vitro fertilization, they compared the weights of 447 singleton births against cell numbers in embryos when transferred. Earlier reports suggest the possibility that such factors may influence birthweight or anomalies in children. This research, published in the journal Reproductive BioMedicine Online, [www.rbmonline.com/Article/2093 – e-pub ahead of print 1 February 2006] indicates that embryos with fewer cells may produce lightweight babies.



All women who conceived by IVF in their Hospital between 1998 and 2001 were included. Those who lost one or more fetuses during pregnancy, had pre-term births and delivered babies with congenital anomalies (3 cases) were excluded. Embryos scored for their cell number, stage of growth and morphology were transferred 3 days post-fertilization. Mean birthweights of babies produced from embryos with 7 or 8 cells of good symmetry and few fragments were compared with those produced from embryos with <7 or >8 cells.

Gestational ages were also assessed, and the data were adjusted according to numbers of replaced embryos, culture media, maternal age and fetal sex. Sub-groups of women were also analysed. 21% of the patients had embryos transferred with <7 cells, 61% with 7–8 cells, and 18% with >8 cells. Relative birthweights were 3388, 3452 and 3550 g respectively, differences between the lowest and highest groups being statistically significant. Each additional embryonic cell added an average of 42.7 g to birthweights. Other variables analysed included the consequences of assisted ‘hatching’ of embryos in particular patients.


Weaknesses in the data included problems in matching particular embryos to specific singleton births when 2–3 embryos were transferred. Better-designed studies are needed, e.g. transferring single embryos, and involving factors such as smoking, hypertension or diabetes, and different culture media.

Nevertheless, these findings are significant because demonstration of links between birth outcomes and embryonic characteristics prior to implantation are rare. In addition, the observation may not just be unique to IVF babies: it may apply to the general population as well but of course one cannot check this since such embryos remain hidden from observation and analysis.

Dr Catherine Racowsky | alfa
Further information:
http://www.rbmonline.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>