Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common molecular ’signature’ identified in solid tumors

31.01.2006


Scientists have discovered that a wide variety of different cancers actually share something in common – a molecular “signature” made up of tiny bits of genetic material called microRNA (miRNA) that target key cancer genes and promote malignant growth.



The finding provides more insight into miRNA as an emerging class of gene regulators and may also pave the way for new approaches in diagnosis and treatment. The study appears online in the Proceedings of the National Academy of Sciences.

Scientists have only recently begun to understand how important microRNA may be in regulating gene expression. For years, these tiny bits of genetic material went unnoticed – nestled within vast stretches of the genome that appeared to be non-functional. They may have been easy to overlook: miRNAs are usually only 22 or so nucleotides in length – miniscule in size when compared to their cousins, messenger RNA, which can be several hundred to a thousand times that long.


But several years ago, researchers studying roundworms noted that properly functioning miRNA was necessary for normal development. Since then, scientists in laboratories around the world have identified hundreds of miRNAs and found that they are highly conserved over time – meaning that they show up in generation after generation in everything from plants to mice to humans – confirming their important roles in growth and survival.

Carlo Croce, professor and chair of molecular virology, immunology and medical genetics at The Ohio State University and the first researcher to discover miRNA involvement in human cancer, had a hunch that there might be shared patterns of miRNA among certain cancers. Under his direction, researchers looked for miRNA activity, or expression, in 540 samples of lung, breast, stomach, prostate, colon and pancreatic tumors and in the normal tissue surrounding them.

Using microarray technology developed at Ohio State , lead investigators Stefano Volinia and George Calin found 137 different miRNAs expressed in at least half of the cancers, with 43 miRNAs allowing scientists to distinguish the difference between normal and malignant tissue.

Further tests showed that 21 of the distinguishing miRNAs were deregulated in at least three of the cancers – and in some cases, as many as five or all six. The researchers defined this limited set as the “miRNA signature” in solid tumors.

Croce says finding such a signature is important because it shows that many forms of cancer share common genetic pathways that become scrambled as cancer takes hold and spreads. He says narrowing the list of the most active ones provides a guide to directing future research.

“We know that there are hundreds of miRNAs, and some of them may have multiple gene targets. Finding the ones that appear over and over again in various forms of cancer will help us design new and better interventions,” says Croce.

MiRNAs can behave like oncogenes, which promote tumor growth, or tumor suppressors, which keep potentially malignant cells in check. Croce points out that miRNA activity is tissue-sensitive, meaning some miRNAs may be overexpressed, or “turned on” in some of the cancers while in others they are underexpressed, or “turned off.”

In the six types of cancer in the study, the majority (26) of the miRNAs were overexpressed, while 17 were underexpressed.

Calin and Volinia also identified several key cancer genes the miRNA signature targets, including the tumor suppressors retinoblastoma-1 (RB1) and transforming growth factor, beta receptor 2 (TGFBR2).

Croce predicts that miRNAs themselves may one day be used as treatments. “If we can replace miRNAs that are lost and block those that are overly abundant, then maybe we can prevent some of the very earliest changes that happen in the development of cancer. There is a lot of work that still needs to be done, but I am convinced that this field will give us more precise and less toxic ways of dealing with cancer than we have today – even considering some of our new, molecularly-targeted therapies.” Support from the research came from the National Cancer Institute, the Italian Ministry of Public Health, the Italian Ministry of University Research Telethon, the Italian Association for Cancer Research and a Kimmel Scholar award to George Calin.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>