Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common molecular ’signature’ identified in solid tumors

31.01.2006


Scientists have discovered that a wide variety of different cancers actually share something in common – a molecular “signature” made up of tiny bits of genetic material called microRNA (miRNA) that target key cancer genes and promote malignant growth.



The finding provides more insight into miRNA as an emerging class of gene regulators and may also pave the way for new approaches in diagnosis and treatment. The study appears online in the Proceedings of the National Academy of Sciences.

Scientists have only recently begun to understand how important microRNA may be in regulating gene expression. For years, these tiny bits of genetic material went unnoticed – nestled within vast stretches of the genome that appeared to be non-functional. They may have been easy to overlook: miRNAs are usually only 22 or so nucleotides in length – miniscule in size when compared to their cousins, messenger RNA, which can be several hundred to a thousand times that long.


But several years ago, researchers studying roundworms noted that properly functioning miRNA was necessary for normal development. Since then, scientists in laboratories around the world have identified hundreds of miRNAs and found that they are highly conserved over time – meaning that they show up in generation after generation in everything from plants to mice to humans – confirming their important roles in growth and survival.

Carlo Croce, professor and chair of molecular virology, immunology and medical genetics at The Ohio State University and the first researcher to discover miRNA involvement in human cancer, had a hunch that there might be shared patterns of miRNA among certain cancers. Under his direction, researchers looked for miRNA activity, or expression, in 540 samples of lung, breast, stomach, prostate, colon and pancreatic tumors and in the normal tissue surrounding them.

Using microarray technology developed at Ohio State , lead investigators Stefano Volinia and George Calin found 137 different miRNAs expressed in at least half of the cancers, with 43 miRNAs allowing scientists to distinguish the difference between normal and malignant tissue.

Further tests showed that 21 of the distinguishing miRNAs were deregulated in at least three of the cancers – and in some cases, as many as five or all six. The researchers defined this limited set as the “miRNA signature” in solid tumors.

Croce says finding such a signature is important because it shows that many forms of cancer share common genetic pathways that become scrambled as cancer takes hold and spreads. He says narrowing the list of the most active ones provides a guide to directing future research.

“We know that there are hundreds of miRNAs, and some of them may have multiple gene targets. Finding the ones that appear over and over again in various forms of cancer will help us design new and better interventions,” says Croce.

MiRNAs can behave like oncogenes, which promote tumor growth, or tumor suppressors, which keep potentially malignant cells in check. Croce points out that miRNA activity is tissue-sensitive, meaning some miRNAs may be overexpressed, or “turned on” in some of the cancers while in others they are underexpressed, or “turned off.”

In the six types of cancer in the study, the majority (26) of the miRNAs were overexpressed, while 17 were underexpressed.

Calin and Volinia also identified several key cancer genes the miRNA signature targets, including the tumor suppressors retinoblastoma-1 (RB1) and transforming growth factor, beta receptor 2 (TGFBR2).

Croce predicts that miRNAs themselves may one day be used as treatments. “If we can replace miRNAs that are lost and block those that are overly abundant, then maybe we can prevent some of the very earliest changes that happen in the development of cancer. There is a lot of work that still needs to be done, but I am convinced that this field will give us more precise and less toxic ways of dealing with cancer than we have today – even considering some of our new, molecularly-targeted therapies.” Support from the research came from the National Cancer Institute, the Italian Ministry of Public Health, the Italian Ministry of University Research Telethon, the Italian Association for Cancer Research and a Kimmel Scholar award to George Calin.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>