Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mad-cow culprit maintains stem cells

31.01.2006


What do mad cow disease and stem cell research have in common? Whitehead Institute scientists have found that the same protein that causes neurodegenerative conditions such as bovine spongiform encephalopathy (mad cow disease) is also important for helping certain adult stem cells maintain themselves.



"For years we’ve wondered why evolution has preserved this protein, what positive role it could possibly be playing," says Whitehead Member Susan Lindquist. Along with Whitehead Member Harvey Lodish, Lindquist is a coauthor on the paper which will published online in Proceedings of the National Academy of Sciences during the week of January 30. "With these findings, we have our first answer," she says.

For over ten years, researchers have known that a protein called PrP causes mad cow disease and its human equivalent, Creutzfeld-Jakob disease. PrP is a prion, a class of proteins that has the unusual ability to recruit other proteins to change their shape (PrP is shorthand for "prion protein."). This is significant, because a protein’s form determines its function. When a prion changes shape, or "misfolds," it creates a cascade where neighboring proteins all assume that particular conformation. In some organisms, such as yeast cells, this process can be harmless, even beneficial. But in mammals, it can lead to the fatal brain lesions that characterize diseases such as Creutzfeld-Jakob.


Curiously, however, PrP can be found throughout healthy human bodies, particularly in the brain where it’s highly abundant. In fact, it’s found in many mammalian species, and only on the rarest occasions does it result in disease. Clearly, scientists have reasoned, such a widely conserved protein also must play a positive role.

In 1993, scientists created a line of mice in which the gene that codes for PrP was knocked out, preventing the mice from expressing the prion in any tissues. Surprisingly, the mice appeared fine, showing no sign of any ill effect. The only difference between these mice and the control mice was that the knock-out animals were incapable of contracting prion-related neurodegenerative disease when infected. Researchers knew then that PrP was necessary for mad-cow type diseases; any other kind of normal function remained unknown. (There is, however, some weak data suggesting that in certain cultured cells PrP may help prevent cell death.)

Chengcheng Zhang, a postdoctoral researcher in the lab of Harvey Lodish, was studying hematopoietic (blood forming) stem cells in mouse fetal tissue when he discovered that PrP was expressed abundantly on the surfaces of these stem cells. "I found that while not all blood cells with PrP on their surface were stem cells, any cell that lacked PrP was definitely not a stem cell," says Zhang.

Zhang teamed up with the Lindquist lab’s graduate student Andrew Steele, an expert in prions, to discover what role PrP might play in stem cell biology. Zhang and Steele took bone marrow from mice in which PrP had been knocked out, and transferred that marrow into normal mice whose blood and immune systems had been irradiated. The new bone marrow took hold, and these mice flourished, although all their blood cells lacked PrP. Zhang and Steele continued the experiment, this time taking bone marrow from the newly reconstituted mice, and transplanting it into another group of mice. They repeated this process again and again--transplanting bone marrow from one group of mice to another like passing a baton.

Soon they noticed that with each subsequent transplant, the stem cells began to lose their ability to reconstitute. Eventually, the scientists ended up with mice whose hematopoietic stem cells completely lacked the ability to generate new cells. However, in the control group, where they mimicked the experiment with bone marrow abundant with PrP, each transplant was as good as the next, and at no point down the line did stem cells lose their efficacy.

"Clearly, PrP is important for maintaining stem cells," says Lodish. "We’re not sure yet how it does this, but the correlation is obvious."

"PrP is a real black box," adds Lindquist. "This is the first clear indication we have of beneficial role for it in a living animal. Now we need to discover its molecular mechanism."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>