Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mad-cow culprit maintains stem cells

31.01.2006


What do mad cow disease and stem cell research have in common? Whitehead Institute scientists have found that the same protein that causes neurodegenerative conditions such as bovine spongiform encephalopathy (mad cow disease) is also important for helping certain adult stem cells maintain themselves.



"For years we’ve wondered why evolution has preserved this protein, what positive role it could possibly be playing," says Whitehead Member Susan Lindquist. Along with Whitehead Member Harvey Lodish, Lindquist is a coauthor on the paper which will published online in Proceedings of the National Academy of Sciences during the week of January 30. "With these findings, we have our first answer," she says.

For over ten years, researchers have known that a protein called PrP causes mad cow disease and its human equivalent, Creutzfeld-Jakob disease. PrP is a prion, a class of proteins that has the unusual ability to recruit other proteins to change their shape (PrP is shorthand for "prion protein."). This is significant, because a protein’s form determines its function. When a prion changes shape, or "misfolds," it creates a cascade where neighboring proteins all assume that particular conformation. In some organisms, such as yeast cells, this process can be harmless, even beneficial. But in mammals, it can lead to the fatal brain lesions that characterize diseases such as Creutzfeld-Jakob.


Curiously, however, PrP can be found throughout healthy human bodies, particularly in the brain where it’s highly abundant. In fact, it’s found in many mammalian species, and only on the rarest occasions does it result in disease. Clearly, scientists have reasoned, such a widely conserved protein also must play a positive role.

In 1993, scientists created a line of mice in which the gene that codes for PrP was knocked out, preventing the mice from expressing the prion in any tissues. Surprisingly, the mice appeared fine, showing no sign of any ill effect. The only difference between these mice and the control mice was that the knock-out animals were incapable of contracting prion-related neurodegenerative disease when infected. Researchers knew then that PrP was necessary for mad-cow type diseases; any other kind of normal function remained unknown. (There is, however, some weak data suggesting that in certain cultured cells PrP may help prevent cell death.)

Chengcheng Zhang, a postdoctoral researcher in the lab of Harvey Lodish, was studying hematopoietic (blood forming) stem cells in mouse fetal tissue when he discovered that PrP was expressed abundantly on the surfaces of these stem cells. "I found that while not all blood cells with PrP on their surface were stem cells, any cell that lacked PrP was definitely not a stem cell," says Zhang.

Zhang teamed up with the Lindquist lab’s graduate student Andrew Steele, an expert in prions, to discover what role PrP might play in stem cell biology. Zhang and Steele took bone marrow from mice in which PrP had been knocked out, and transferred that marrow into normal mice whose blood and immune systems had been irradiated. The new bone marrow took hold, and these mice flourished, although all their blood cells lacked PrP. Zhang and Steele continued the experiment, this time taking bone marrow from the newly reconstituted mice, and transplanting it into another group of mice. They repeated this process again and again--transplanting bone marrow from one group of mice to another like passing a baton.

Soon they noticed that with each subsequent transplant, the stem cells began to lose their ability to reconstitute. Eventually, the scientists ended up with mice whose hematopoietic stem cells completely lacked the ability to generate new cells. However, in the control group, where they mimicked the experiment with bone marrow abundant with PrP, each transplant was as good as the next, and at no point down the line did stem cells lose their efficacy.

"Clearly, PrP is important for maintaining stem cells," says Lodish. "We’re not sure yet how it does this, but the correlation is obvious."

"PrP is a real black box," adds Lindquist. "This is the first clear indication we have of beneficial role for it in a living animal. Now we need to discover its molecular mechanism."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>