Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Source of crucial immune cell in the skin discovered

30.01.2006


Identification of precursor cell may lead to tumor immunotherapy as well as new treatment for rare disorder



Mount Sinai School of Medicine researchers have identified the precursors of cells in the skin that are part of the first line of defense against invading pathogens. The study will appear on Nature Immunology’s website this week and will be published in a future issue.

A tight network of cells covering the entire body is formed in the skin by a group of cells known as Langerhans cells. These cells ingest antigens present in the skin and transport them to lymph nodes, activating the immune system to protect the body against pathogens.


"Langerhans cells are particularly important to the development of tumor immunotherapy," said Miriam Merad, MD, PhD, Assistant Professor of Gene and Cell Medicine at Mount Sinai and lead author of the study. "Most vaccines being developed for tumors are injected into the skin and rely on these cells to transport the antigen to the lymph nodes to trigger an immune response against the tumor."

Once Langerhans cells transport an antigen, they need to be replaced to maintain the tight network in the skin. Dr. Merad and colleagues at Mount Sinai School of Medicine recently discovered that when skin is inflamed Langerhans cells are replaced by circulating precursor cells. They have now identified what this precursor cell is and identified a protein that is essential to the transformation of these precursor cells into Langerhans cells.

The researchers put fluorescent beads in mice in a group of immune cells known as monocytes. They then followed the cells to observe their fate. They found that a specific type of monocyte know as Gr-1 homes to inflamed skin, proliferates, and then differentiates to form Langerhans cells. They also found that a protein, called colony stimulating factor receptor (Csf-1) is necessary for the transformation of Gr-1 cells into Langerhans cells.

The researchers state that discovery of how Langerhans cells are replaced "should contribute to ongoing efforts to engineer immune responses in vaccine design and tumor immunotherapy and to a better understanding of the immune response against skin pathogens."

"Now that we know which cells are the precursors to Langerhans cells and the importance of Csf-1, we may be able to enhance tumor vaccines by increasing the recruitment of Langerhans cell precursors to the skin," said Dr. Merad.

Additionally, the researchers point out that the new findings hold promise for potential therapeutic for patients with a Langerhans histocytosis, a rare disease effecting approximately 200,000 children annually. In children with this disorder, large numbers of Langerhans cells infiltrate organs and tissues throughout the body. So, targeting the pathway by which these cells are formed could lead to new therapies to help children who now face the possibility of lifelong complications.

"It is known that Csf-1 levels are elevated in patients with Langerhans histocytosis," said Dr. Merad. "Our findings indicated that finding ways to lower Csf-1 levels may produce new therapeutics for these patients."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>