Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Source of crucial immune cell in the skin discovered

30.01.2006


Identification of precursor cell may lead to tumor immunotherapy as well as new treatment for rare disorder



Mount Sinai School of Medicine researchers have identified the precursors of cells in the skin that are part of the first line of defense against invading pathogens. The study will appear on Nature Immunology’s website this week and will be published in a future issue.

A tight network of cells covering the entire body is formed in the skin by a group of cells known as Langerhans cells. These cells ingest antigens present in the skin and transport them to lymph nodes, activating the immune system to protect the body against pathogens.


"Langerhans cells are particularly important to the development of tumor immunotherapy," said Miriam Merad, MD, PhD, Assistant Professor of Gene and Cell Medicine at Mount Sinai and lead author of the study. "Most vaccines being developed for tumors are injected into the skin and rely on these cells to transport the antigen to the lymph nodes to trigger an immune response against the tumor."

Once Langerhans cells transport an antigen, they need to be replaced to maintain the tight network in the skin. Dr. Merad and colleagues at Mount Sinai School of Medicine recently discovered that when skin is inflamed Langerhans cells are replaced by circulating precursor cells. They have now identified what this precursor cell is and identified a protein that is essential to the transformation of these precursor cells into Langerhans cells.

The researchers put fluorescent beads in mice in a group of immune cells known as monocytes. They then followed the cells to observe their fate. They found that a specific type of monocyte know as Gr-1 homes to inflamed skin, proliferates, and then differentiates to form Langerhans cells. They also found that a protein, called colony stimulating factor receptor (Csf-1) is necessary for the transformation of Gr-1 cells into Langerhans cells.

The researchers state that discovery of how Langerhans cells are replaced "should contribute to ongoing efforts to engineer immune responses in vaccine design and tumor immunotherapy and to a better understanding of the immune response against skin pathogens."

"Now that we know which cells are the precursors to Langerhans cells and the importance of Csf-1, we may be able to enhance tumor vaccines by increasing the recruitment of Langerhans cell precursors to the skin," said Dr. Merad.

Additionally, the researchers point out that the new findings hold promise for potential therapeutic for patients with a Langerhans histocytosis, a rare disease effecting approximately 200,000 children annually. In children with this disorder, large numbers of Langerhans cells infiltrate organs and tissues throughout the body. So, targeting the pathway by which these cells are formed could lead to new therapies to help children who now face the possibility of lifelong complications.

"It is known that Csf-1 levels are elevated in patients with Langerhans histocytosis," said Dr. Merad. "Our findings indicated that finding ways to lower Csf-1 levels may produce new therapeutics for these patients."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>