Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Source of crucial immune cell in the skin discovered


Identification of precursor cell may lead to tumor immunotherapy as well as new treatment for rare disorder

Mount Sinai School of Medicine researchers have identified the precursors of cells in the skin that are part of the first line of defense against invading pathogens. The study will appear on Nature Immunology’s website this week and will be published in a future issue.

A tight network of cells covering the entire body is formed in the skin by a group of cells known as Langerhans cells. These cells ingest antigens present in the skin and transport them to lymph nodes, activating the immune system to protect the body against pathogens.

"Langerhans cells are particularly important to the development of tumor immunotherapy," said Miriam Merad, MD, PhD, Assistant Professor of Gene and Cell Medicine at Mount Sinai and lead author of the study. "Most vaccines being developed for tumors are injected into the skin and rely on these cells to transport the antigen to the lymph nodes to trigger an immune response against the tumor."

Once Langerhans cells transport an antigen, they need to be replaced to maintain the tight network in the skin. Dr. Merad and colleagues at Mount Sinai School of Medicine recently discovered that when skin is inflamed Langerhans cells are replaced by circulating precursor cells. They have now identified what this precursor cell is and identified a protein that is essential to the transformation of these precursor cells into Langerhans cells.

The researchers put fluorescent beads in mice in a group of immune cells known as monocytes. They then followed the cells to observe their fate. They found that a specific type of monocyte know as Gr-1 homes to inflamed skin, proliferates, and then differentiates to form Langerhans cells. They also found that a protein, called colony stimulating factor receptor (Csf-1) is necessary for the transformation of Gr-1 cells into Langerhans cells.

The researchers state that discovery of how Langerhans cells are replaced "should contribute to ongoing efforts to engineer immune responses in vaccine design and tumor immunotherapy and to a better understanding of the immune response against skin pathogens."

"Now that we know which cells are the precursors to Langerhans cells and the importance of Csf-1, we may be able to enhance tumor vaccines by increasing the recruitment of Langerhans cell precursors to the skin," said Dr. Merad.

Additionally, the researchers point out that the new findings hold promise for potential therapeutic for patients with a Langerhans histocytosis, a rare disease effecting approximately 200,000 children annually. In children with this disorder, large numbers of Langerhans cells infiltrate organs and tissues throughout the body. So, targeting the pathway by which these cells are formed could lead to new therapies to help children who now face the possibility of lifelong complications.

"It is known that Csf-1 levels are elevated in patients with Langerhans histocytosis," said Dr. Merad. "Our findings indicated that finding ways to lower Csf-1 levels may produce new therapeutics for these patients."

Mount Sinai Press Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>