Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A real time look at interactions between RNA and proteins

30.01.2006


Intracellular observation of RNA metabolism will help identify disease-associated RNAs



For the first time, researchers can now peer inside intact cells to not only identify RNA-binding proteins, but also observe–in real-time–the intricate activities of these special molecules that make them key players in managing some of the cell’s most basic functions. Researchers at the University of Pennsylvania School of Medicine who developed the new technology see this advance as one of the next logical steps in genomics research. Senior author James Eberwine, PhD, Professor of Pharmacology at Penn, and colleagues published their research this week in the Proceedings of the National Academy of Sciences.

"Now we have a workable system to understand all aspects of RNA metabolism in a cell," say Eberwine. "For the first time, we can study how manipulation of cellular physiology, such as administering a drug, changes RNA-binding protein and RNA interactions. This technology allows us to see that in real time in real cells."


RNA is the genetic material that programs cells to make proteins from DNA’s blueprint and specifies which proteins should be made. There are many types of RNA in the cells of mammals, such as transfer RNA, ribosomal RNA, and messenger RNA–each with a specific purpose in making and manipulating proteins.

The workhorses of the cell, RNA-binding proteins regulate every aspect of RNA function. Indeed, RNA is transported from one site to another inside the cell by RNA-binding proteins; RNA is translated into protein with the help of RNA-binding proteins, and RNA-binding proteins degrade used RNA. "They’re really the master regulators of expression in the cell," says Eberwine.

Using whole neurons from rodents, the researchers were able to identify RNA interactions in live cells. In collaboration with Ûlo Langel from Stockholm University, the Penn investigators devised a many-talented molecule that does not get broken down by enzymes once inside a live cell. One end of the molecule, called a peptide nucleic acid (PNA), has a cell-penetrating peptide called transportan 10 to first get the PNA through the cell membrane. Once in the cell, the PNA binds to a specific target messenger RNA (mRNA). There is also a compound on the molecule that can be activated by light and will cross-link the PNA to whatever protein is nearby. The researchers isolated an array of proteins from the complex of the PNA, the targeted mRNAs, and associated RNA-binding proteins. The cells are then broken apart and the proteins that interact with the mRNA are identified with a mass spectrometer.

With their system, the researchers are trying to identify RNA-binding proteins that bind RNAs of interest–such as those involved in the targeting, degradation, and translation of RNAs into proteins. Once identified, the Eberwine team uses another technology they developed to find the other RNA cargos that bind to that RNA-binding protein. These are other RNAs that likely co-regulate RNAs associated with disease.

The research was supported by grants from the National Institutes of Health, the Swedish Science Foundation, and the European Community. Study coauthors are Jennifer Zielinski, Tiina Peritz, Jeanine Jochems, Theresa Kannanayakal, and Kevin Miyashiro, from Penn, and Kalle Kilk, Emilia Eiriksdóttir, and Ûlo Langel from Stockholm University, Sweden.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>