Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet smell of nano-success

30.01.2006


Cleaner method of making spices, perfumes moves one step closer to reality



Materials scientists at Lehigh University and catalyst chemists at Cardiff University have uncovered secrets of the "nanoworld" that promise to lead to cleaner methods of producing, among other things, spices and perfumes.

The materials scientists, headed by Christopher Kiely of Lehigh, have determined the structure of a type of gold-palladium nanoparticle, which is the active component of a new environmentally friendly catalyst that promotes the oxidation of primary alcohols to aldehydes.


The researchers reported their results Jan. 20 in Science magazine, one of the world’s top science journals. The article was titled "Solvent-free oxidation of primary alcohols to aldehydes using titania-supported gold-palladium catalysts."

The oxidation of primary alcohols to aldehydes is of fundamental importance to the chemical, pharmaceutical and perfume industries.

The oxidation of aromatic primary alcohols, such as vanillyl and cinnamyl alcohol, is of particular importance in the manufacture of perfumes and flavorings. Almost 95 percent of the worlds’ vanilla (vanillyl aldehyde) is synthetically manufactured.

Benzaldehyde is also a key intermediate in the production of many fine chemicals in the agrochemical and pharmaceutical industries.

Such oxidation reactions have always been performed using permanganates or chromates, but these reagents are expensive and have serious toxicity issues associated with them. This new catalyst, consisting of gold-palladium nanoparticles dispersed on a titanium oxide support, allows this reaction to take place using oxygen under mild solvent-free conditions.

The new catalyst system was developed by a group headed by Prof. Graham Hutchings at Cardiff University in the United Kingdom.

"Determining the structure of the gold-palladium nanoparticle will help us understand how this catalyst works at the atomic level," says Kiely, who directs the Nanocharacterization Laboratory at Lehigh University in Bethlehem, Pa.

"This will inevitably enable us to optimize its performance and will subsequently lead to the development of other gold-based catalysts."

Samples of the catalyst were studied by Andrew Herzing, a Ph.D. candidate in materials science and engineering in Lehigh’s Center for Advanced Materials and Nanotechnology (CAMN). Herzing used Lehigh’s VG HB 603 aberration-corrected scanning transmission electron microscope (STEM), which enables energy dispersive x-ray data to be collected from individual nanoparticles.

"Our aberration-corrected STEM is unique in that it has an extremely small and intense electron probe. It also has a very high collection efficiency for the x-rays generated," says Kiely.

The original microscope was purchased almost a decade ago but was fitted only last year with a spherical aberration corrector designed to overcome distortions in the lenses that focus the electron beam. This has led to a significant improvement in resolution.

"Before being fitted with the aberration corrector, this microscope held the world record for spatial resolution in x-ray elemental mapping at two nanometers (two billionths of a meter)," says Kiely.

"Now, with the aberration corrector, it achieves an elemental mapping resolution of half a nanometer, approximately the width of two atoms."

Even so, obtaining chemical information from the tiny gold-palladium particle is difficult because the x-ray signal from a palladium atom is far weaker than the signal from a gold atom. There are also signals from the titanium oxide support. Under normal circumstances, the palladium signal would be lost in the noise.

To overcome this, Masashi Watanabe, a research scientist in the CAMN, has developed software based on multivariate statistical analysis combined with a spectrum imaging technique. While scanning for a particular element, Watanabe’s software compares all the signals generated from an area and automatically identifies features in a particular signal dataset (in this case, a characteristic palladium X-ray signal).

Watanabe’s automated approach significantly reduces the amount of random noise both in the signal and background. While a similar methodology has been in use for some time, Watanabe’s program reduces the data analysis time from several hours to a few minutes.

Elemental maps collected from individual nanoparticles revealed that the palladium signal originates from a slightly larger spatial area than that of the corresponding gold signal. From this, Kiely’s team concluded that the nanoparticles have a core-shell structure in which a palladium-rich shell surrounds a gold-rich core.

Even though the outer shell is palladium rich, this gold-palladium catalyst significantly outperformed a similar catalyst comprised solely of palladium. It is proposed that the gold acts as an electron promoter for the palladium, thus enhancing the nanoparticle’s catalytic properties.

"Correlating a particular catalyst’s performance with detailed structural and compositional data consistently proves to be a powerful methodology for understanding catalytic reactions," says Kiely.

Kiely has been collaborating with Hutchings for more than 10 years. The Lehigh-Cardiff team published an article titled "Tuneable gold catalysts for selective hydrocarbon oxidation under mild conditions" in Nature magazine on Oct. 20.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>