Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet smell of nano-success

30.01.2006


Cleaner method of making spices, perfumes moves one step closer to reality



Materials scientists at Lehigh University and catalyst chemists at Cardiff University have uncovered secrets of the "nanoworld" that promise to lead to cleaner methods of producing, among other things, spices and perfumes.

The materials scientists, headed by Christopher Kiely of Lehigh, have determined the structure of a type of gold-palladium nanoparticle, which is the active component of a new environmentally friendly catalyst that promotes the oxidation of primary alcohols to aldehydes.


The researchers reported their results Jan. 20 in Science magazine, one of the world’s top science journals. The article was titled "Solvent-free oxidation of primary alcohols to aldehydes using titania-supported gold-palladium catalysts."

The oxidation of primary alcohols to aldehydes is of fundamental importance to the chemical, pharmaceutical and perfume industries.

The oxidation of aromatic primary alcohols, such as vanillyl and cinnamyl alcohol, is of particular importance in the manufacture of perfumes and flavorings. Almost 95 percent of the worlds’ vanilla (vanillyl aldehyde) is synthetically manufactured.

Benzaldehyde is also a key intermediate in the production of many fine chemicals in the agrochemical and pharmaceutical industries.

Such oxidation reactions have always been performed using permanganates or chromates, but these reagents are expensive and have serious toxicity issues associated with them. This new catalyst, consisting of gold-palladium nanoparticles dispersed on a titanium oxide support, allows this reaction to take place using oxygen under mild solvent-free conditions.

The new catalyst system was developed by a group headed by Prof. Graham Hutchings at Cardiff University in the United Kingdom.

"Determining the structure of the gold-palladium nanoparticle will help us understand how this catalyst works at the atomic level," says Kiely, who directs the Nanocharacterization Laboratory at Lehigh University in Bethlehem, Pa.

"This will inevitably enable us to optimize its performance and will subsequently lead to the development of other gold-based catalysts."

Samples of the catalyst were studied by Andrew Herzing, a Ph.D. candidate in materials science and engineering in Lehigh’s Center for Advanced Materials and Nanotechnology (CAMN). Herzing used Lehigh’s VG HB 603 aberration-corrected scanning transmission electron microscope (STEM), which enables energy dispersive x-ray data to be collected from individual nanoparticles.

"Our aberration-corrected STEM is unique in that it has an extremely small and intense electron probe. It also has a very high collection efficiency for the x-rays generated," says Kiely.

The original microscope was purchased almost a decade ago but was fitted only last year with a spherical aberration corrector designed to overcome distortions in the lenses that focus the electron beam. This has led to a significant improvement in resolution.

"Before being fitted with the aberration corrector, this microscope held the world record for spatial resolution in x-ray elemental mapping at two nanometers (two billionths of a meter)," says Kiely.

"Now, with the aberration corrector, it achieves an elemental mapping resolution of half a nanometer, approximately the width of two atoms."

Even so, obtaining chemical information from the tiny gold-palladium particle is difficult because the x-ray signal from a palladium atom is far weaker than the signal from a gold atom. There are also signals from the titanium oxide support. Under normal circumstances, the palladium signal would be lost in the noise.

To overcome this, Masashi Watanabe, a research scientist in the CAMN, has developed software based on multivariate statistical analysis combined with a spectrum imaging technique. While scanning for a particular element, Watanabe’s software compares all the signals generated from an area and automatically identifies features in a particular signal dataset (in this case, a characteristic palladium X-ray signal).

Watanabe’s automated approach significantly reduces the amount of random noise both in the signal and background. While a similar methodology has been in use for some time, Watanabe’s program reduces the data analysis time from several hours to a few minutes.

Elemental maps collected from individual nanoparticles revealed that the palladium signal originates from a slightly larger spatial area than that of the corresponding gold signal. From this, Kiely’s team concluded that the nanoparticles have a core-shell structure in which a palladium-rich shell surrounds a gold-rich core.

Even though the outer shell is palladium rich, this gold-palladium catalyst significantly outperformed a similar catalyst comprised solely of palladium. It is proposed that the gold acts as an electron promoter for the palladium, thus enhancing the nanoparticle’s catalytic properties.

"Correlating a particular catalyst’s performance with detailed structural and compositional data consistently proves to be a powerful methodology for understanding catalytic reactions," says Kiely.

Kiely has been collaborating with Hutchings for more than 10 years. The Lehigh-Cardiff team published an article titled "Tuneable gold catalysts for selective hydrocarbon oxidation under mild conditions" in Nature magazine on Oct. 20.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>