Tumor cell growth depends on interactions with its microenvironment

An EU funded Specific Targeted Research Project (STREP) entitled “Tumor-Host Genomics” has been launched at the University of Helsinki, Finland. The Tumor-Host Genomics project links together the resources of five European leading-edge laboratories studying major signaling pathways in mesenchymal and hematopoietic cells, forming a concerted effort to understand tumor-host interactions, and to identify novel therapeutic targets.


The European Union will fund the project with a total of 2.7 million € during the next three years. The project is coordinated by Dr. Petri Salven from the University of Helsinki. The other participating principal investigators are Dr. Kari Alitalo and Dr. Jussi Taipale, also form the University of Helsinki, Dr. Peter ten Dijke from Leiden University Medical Center in the Netherlands, and Dr. Luigi Naldini from the San Raffaele Telethon Insitute for Gene Therapy in Italy.

In addition to oncogenic mutations that act cell-autonomously, tumor cell growth depends on interactions with its microenvironment. Tumor microenvironment consists of cells of hematopoietic and mesenchymal origin, including inflammatory cells, stem and progenitor cells, fibroblasts, endothelial cells and vascular mural cells. Tumor cell growth is known to depend on the interaction of tumor cells with such stromal cells. For example, growing tumor needs to recruit normal endothelial and vascular mural cells to form its blood vessels.

The Tumor-Host Genomics project will develop novel advanced functional genomics instruments, technologies and methods to study tumor-host interactions in cancer, and apply these techniques to the identification of molecules and processes in normal cells which could be targeted by novel anti-cancer therapeutic agents. The ultimate goal of the project is to unravel and validate new targets for anticancer therapy, and new strategies for delivering therapy to tumors.

“We are studying the molecular and cellular interactions between the normal, benign cells of the tumor microenvironment, and the cancer cells. These interactions represent an attractive target for cancer therapy, because normal cells are genetically stable, and would not be expected to develop resistance to therapeutic agents”, says Dr. Salven, the coordinator for the project.

The principal investigators participating the Tumor-Host Genomics project:

Adjunct Professor, Academy Researcher Petri Salven, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: stem cells and tumor angiogenesis, RNAi, imaging

Academy Professor Kari Alitalo, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: reseptor tyrosine kinases, vascular signal transduction

Professor Jussi Taipale, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: regulatory element prediction, high throughput analyses,

Professor Peter ten Dijke, Leiden University Medical Center, the Netherlands
Expertise: RNAi libraries, TGF-b superfamily signaling

Professor Luigi Naldini, San Raffaele Telethon Insitute for Gene Therapy, Italy
Expertise: lentiviral systems, in vivo tumor targeting

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors