Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor cell growth depends on interactions with its microenvironment

27.01.2006


An EU funded Specific Targeted Research Project (STREP) entitled "Tumor-Host Genomics" has been launched at the University of Helsinki, Finland. The Tumor-Host Genomics project links together the resources of five European leading-edge laboratories studying major signaling pathways in mesenchymal and hematopoietic cells, forming a concerted effort to understand tumor-host interactions, and to identify novel therapeutic targets.



The European Union will fund the project with a total of 2.7 million € during the next three years. The project is coordinated by Dr. Petri Salven from the University of Helsinki. The other participating principal investigators are Dr. Kari Alitalo and Dr. Jussi Taipale, also form the University of Helsinki, Dr. Peter ten Dijke from Leiden University Medical Center in the Netherlands, and Dr. Luigi Naldini from the San Raffaele Telethon Insitute for Gene Therapy in Italy.

In addition to oncogenic mutations that act cell-autonomously, tumor cell growth depends on interactions with its microenvironment. Tumor microenvironment consists of cells of hematopoietic and mesenchymal origin, including inflammatory cells, stem and progenitor cells, fibroblasts, endothelial cells and vascular mural cells. Tumor cell growth is known to depend on the interaction of tumor cells with such stromal cells. For example, growing tumor needs to recruit normal endothelial and vascular mural cells to form its blood vessels.


The Tumor-Host Genomics project will develop novel advanced functional genomics instruments, technologies and methods to study tumor-host interactions in cancer, and apply these techniques to the identification of molecules and processes in normal cells which could be targeted by novel anti-cancer therapeutic agents. The ultimate goal of the project is to unravel and validate new targets for anticancer therapy, and new strategies for delivering therapy to tumors.

"We are studying the molecular and cellular interactions between the normal, benign cells of the tumor microenvironment, and the cancer cells. These interactions represent an attractive target for cancer therapy, because normal cells are genetically stable, and would not be expected to develop resistance to therapeutic agents", says Dr. Salven, the coordinator for the project.

The principal investigators participating the Tumor-Host Genomics project:

Adjunct Professor, Academy Researcher Petri Salven, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: stem cells and tumor angiogenesis, RNAi, imaging

Academy Professor Kari Alitalo, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: reseptor tyrosine kinases, vascular signal transduction

Professor Jussi Taipale, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: regulatory element prediction, high throughput analyses,

Professor Peter ten Dijke, Leiden University Medical Center, the Netherlands
Expertise: RNAi libraries, TGF-b superfamily signaling

Professor Luigi Naldini, San Raffaele Telethon Insitute for Gene Therapy, Italy
Expertise: lentiviral systems, in vivo tumor targeting

Paivi Lehtinen | alfa
Further information:
http://research.med.helsinki.fi/tumorhostgenomics/default.htm
http://www.helsinki.fi

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>