Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor cell growth depends on interactions with its microenvironment

27.01.2006


An EU funded Specific Targeted Research Project (STREP) entitled "Tumor-Host Genomics" has been launched at the University of Helsinki, Finland. The Tumor-Host Genomics project links together the resources of five European leading-edge laboratories studying major signaling pathways in mesenchymal and hematopoietic cells, forming a concerted effort to understand tumor-host interactions, and to identify novel therapeutic targets.



The European Union will fund the project with a total of 2.7 million € during the next three years. The project is coordinated by Dr. Petri Salven from the University of Helsinki. The other participating principal investigators are Dr. Kari Alitalo and Dr. Jussi Taipale, also form the University of Helsinki, Dr. Peter ten Dijke from Leiden University Medical Center in the Netherlands, and Dr. Luigi Naldini from the San Raffaele Telethon Insitute for Gene Therapy in Italy.

In addition to oncogenic mutations that act cell-autonomously, tumor cell growth depends on interactions with its microenvironment. Tumor microenvironment consists of cells of hematopoietic and mesenchymal origin, including inflammatory cells, stem and progenitor cells, fibroblasts, endothelial cells and vascular mural cells. Tumor cell growth is known to depend on the interaction of tumor cells with such stromal cells. For example, growing tumor needs to recruit normal endothelial and vascular mural cells to form its blood vessels.


The Tumor-Host Genomics project will develop novel advanced functional genomics instruments, technologies and methods to study tumor-host interactions in cancer, and apply these techniques to the identification of molecules and processes in normal cells which could be targeted by novel anti-cancer therapeutic agents. The ultimate goal of the project is to unravel and validate new targets for anticancer therapy, and new strategies for delivering therapy to tumors.

"We are studying the molecular and cellular interactions between the normal, benign cells of the tumor microenvironment, and the cancer cells. These interactions represent an attractive target for cancer therapy, because normal cells are genetically stable, and would not be expected to develop resistance to therapeutic agents", says Dr. Salven, the coordinator for the project.

The principal investigators participating the Tumor-Host Genomics project:

Adjunct Professor, Academy Researcher Petri Salven, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: stem cells and tumor angiogenesis, RNAi, imaging

Academy Professor Kari Alitalo, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: reseptor tyrosine kinases, vascular signal transduction

Professor Jussi Taipale, University of Helsinki, Biomedicum Helsinki, Finland
Expertise: regulatory element prediction, high throughput analyses,

Professor Peter ten Dijke, Leiden University Medical Center, the Netherlands
Expertise: RNAi libraries, TGF-b superfamily signaling

Professor Luigi Naldini, San Raffaele Telethon Insitute for Gene Therapy, Italy
Expertise: lentiviral systems, in vivo tumor targeting

Paivi Lehtinen | alfa
Further information:
http://research.med.helsinki.fi/tumorhostgenomics/default.htm
http://www.helsinki.fi

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>