Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists unravel critical genetic puzzle for flu virus replication

26.01.2006


Like any other organism, an influenza virus’s success in life is measured by its genetic track record, its ability to pass on genes from one generation to the next.



But while much is known about the genes and inner workings of flu viruses, how the microbe organizes its genetic contents to seed future generations of viruses has remained an enduring mystery of biology.

Now, with the help of a long-studied flu virus, an electron microscope and a novel idea of how the virus aligns segments of RNA as it prepares to make virions, the particles a virus creates and sends forth to infect cells, that puzzle has been resolved.


The new work, which is reported in this week’s (Jan. 26, 2006) edition of the journal Nature, is important because it presents opportunities to design new antiviral drugs and harness flu viruses for speedier, more efficient vaccine production. The work is especially critical as the biomedical community and governments worldwide develop strategies to cope with the prospect of an avian influenza pandemic.

"We’ve found that the influenza virus has a specific mechanism that permits it to package its genetic materials" as it creates its infectious particles, says Yoshihiro Kawaoka, a University of Wisconsin-Madison School of Veterinary Medicine professor and a leading influenza researcher. Kawaoka is also a professor at the University of Tokyo.

Viruses, including influenza viruses, depend on the cells of their hosts to survive. They infect cells and use them to help make more infectious particles, which are released from the cell and go on to infect other cells.

Using a technique known as electron tomography, a method that enables scientists to generate three-dimensional images of microscopic organisms and structures, Kawaoka and his colleagues, in virtual fashion, dissected a virus and its infectious particles to assess how the virus assembles and organizes the strands of RNA that carry its genes so it can exit one cell and go on to infect other cells.

What Kawaoka found was that the viruses were assembling their infectious genetic elements in a systematic fashion. Virologists have long debated whether the RNA segments in flu viruses assembled at random into the virions or were somehow incorporated into the infectious particle in an organized way.

The RNA segments, according to Kawaoka, form in a distinct pattern abutting the membrane of the virus. They are always arranged in a circle of seven surrounding another segment for a total of eight RNA fragments.

"It was not really known whether the fragments were coming as a set," explains Kawaoka, whose team conducted the work using a long-studied influenza A virus, the family responsible for regular influenza outbreaks, including such medical calamities as the 1918 influenza pandemic.

The fact that the virus requires a systematic -- as opposed to a random -- method of assembly opens the door to the development of new antiviral drugs and the harnessing of benign influenza viruses as gene vectors to optimize vaccine production, Kawaoka says.

"We need to have more antivirals for influenza," according to Kawaoka, "and as these segments get incorporated into the particle as a set, it suggests these elements could be a target for disruption. There must be a genetic element in each of the eight segments that allows them to interact."

What’s more, scientists have been exploring the possibility of using strains of influenza to ferry genes from one virus to another to speed and optimize vaccine production. More efficient methods of vaccine production will be critical should a global outbreak such as the "Spanish " flu pandemic of 1918 recur. That pandemic killed an estimated 30-50 million people.

Knowing how influenza A viruses package their genetic contents, and knowing that they do so systematically, suggests it may be possible, by manipulating key genetic elements, to quickly engineer viruses that can be used to mass produce vaccines. Researchers have been trying to make viral vectors using nine genetic segments, a strategy that has never worked, Kawaoka notes.

"To develop an influenza virus vector, we have to stick to this eight-segment concept," he says.

Such a strategy may be useful for developing vaccines for a range of diseases, including HIV, the virus that causes AIDS, Kawaoka adds.

The new work, according to Kawaoka, benefited from a critical observation made possible by the dissection of the virus and its virions. The virus particles, when observed as a cross section, always displayed the circle of seven RNA fragments surrounding another segment pattern.

"No one has identified this before, perhaps because no one has ever tried to make serial sections of the virus."

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>