Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists unravel critical genetic puzzle for flu virus replication

26.01.2006


Like any other organism, an influenza virus’s success in life is measured by its genetic track record, its ability to pass on genes from one generation to the next.



But while much is known about the genes and inner workings of flu viruses, how the microbe organizes its genetic contents to seed future generations of viruses has remained an enduring mystery of biology.

Now, with the help of a long-studied flu virus, an electron microscope and a novel idea of how the virus aligns segments of RNA as it prepares to make virions, the particles a virus creates and sends forth to infect cells, that puzzle has been resolved.


The new work, which is reported in this week’s (Jan. 26, 2006) edition of the journal Nature, is important because it presents opportunities to design new antiviral drugs and harness flu viruses for speedier, more efficient vaccine production. The work is especially critical as the biomedical community and governments worldwide develop strategies to cope with the prospect of an avian influenza pandemic.

"We’ve found that the influenza virus has a specific mechanism that permits it to package its genetic materials" as it creates its infectious particles, says Yoshihiro Kawaoka, a University of Wisconsin-Madison School of Veterinary Medicine professor and a leading influenza researcher. Kawaoka is also a professor at the University of Tokyo.

Viruses, including influenza viruses, depend on the cells of their hosts to survive. They infect cells and use them to help make more infectious particles, which are released from the cell and go on to infect other cells.

Using a technique known as electron tomography, a method that enables scientists to generate three-dimensional images of microscopic organisms and structures, Kawaoka and his colleagues, in virtual fashion, dissected a virus and its infectious particles to assess how the virus assembles and organizes the strands of RNA that carry its genes so it can exit one cell and go on to infect other cells.

What Kawaoka found was that the viruses were assembling their infectious genetic elements in a systematic fashion. Virologists have long debated whether the RNA segments in flu viruses assembled at random into the virions or were somehow incorporated into the infectious particle in an organized way.

The RNA segments, according to Kawaoka, form in a distinct pattern abutting the membrane of the virus. They are always arranged in a circle of seven surrounding another segment for a total of eight RNA fragments.

"It was not really known whether the fragments were coming as a set," explains Kawaoka, whose team conducted the work using a long-studied influenza A virus, the family responsible for regular influenza outbreaks, including such medical calamities as the 1918 influenza pandemic.

The fact that the virus requires a systematic -- as opposed to a random -- method of assembly opens the door to the development of new antiviral drugs and the harnessing of benign influenza viruses as gene vectors to optimize vaccine production, Kawaoka says.

"We need to have more antivirals for influenza," according to Kawaoka, "and as these segments get incorporated into the particle as a set, it suggests these elements could be a target for disruption. There must be a genetic element in each of the eight segments that allows them to interact."

What’s more, scientists have been exploring the possibility of using strains of influenza to ferry genes from one virus to another to speed and optimize vaccine production. More efficient methods of vaccine production will be critical should a global outbreak such as the "Spanish " flu pandemic of 1918 recur. That pandemic killed an estimated 30-50 million people.

Knowing how influenza A viruses package their genetic contents, and knowing that they do so systematically, suggests it may be possible, by manipulating key genetic elements, to quickly engineer viruses that can be used to mass produce vaccines. Researchers have been trying to make viral vectors using nine genetic segments, a strategy that has never worked, Kawaoka notes.

"To develop an influenza virus vector, we have to stick to this eight-segment concept," he says.

Such a strategy may be useful for developing vaccines for a range of diseases, including HIV, the virus that causes AIDS, Kawaoka adds.

The new work, according to Kawaoka, benefited from a critical observation made possible by the dissection of the virus and its virions. The virus particles, when observed as a cross section, always displayed the circle of seven RNA fragments surrounding another segment pattern.

"No one has identified this before, perhaps because no one has ever tried to make serial sections of the virus."

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>