Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists unravel critical genetic puzzle for flu virus replication

26.01.2006


Like any other organism, an influenza virus’s success in life is measured by its genetic track record, its ability to pass on genes from one generation to the next.



But while much is known about the genes and inner workings of flu viruses, how the microbe organizes its genetic contents to seed future generations of viruses has remained an enduring mystery of biology.

Now, with the help of a long-studied flu virus, an electron microscope and a novel idea of how the virus aligns segments of RNA as it prepares to make virions, the particles a virus creates and sends forth to infect cells, that puzzle has been resolved.


The new work, which is reported in this week’s (Jan. 26, 2006) edition of the journal Nature, is important because it presents opportunities to design new antiviral drugs and harness flu viruses for speedier, more efficient vaccine production. The work is especially critical as the biomedical community and governments worldwide develop strategies to cope with the prospect of an avian influenza pandemic.

"We’ve found that the influenza virus has a specific mechanism that permits it to package its genetic materials" as it creates its infectious particles, says Yoshihiro Kawaoka, a University of Wisconsin-Madison School of Veterinary Medicine professor and a leading influenza researcher. Kawaoka is also a professor at the University of Tokyo.

Viruses, including influenza viruses, depend on the cells of their hosts to survive. They infect cells and use them to help make more infectious particles, which are released from the cell and go on to infect other cells.

Using a technique known as electron tomography, a method that enables scientists to generate three-dimensional images of microscopic organisms and structures, Kawaoka and his colleagues, in virtual fashion, dissected a virus and its infectious particles to assess how the virus assembles and organizes the strands of RNA that carry its genes so it can exit one cell and go on to infect other cells.

What Kawaoka found was that the viruses were assembling their infectious genetic elements in a systematic fashion. Virologists have long debated whether the RNA segments in flu viruses assembled at random into the virions or were somehow incorporated into the infectious particle in an organized way.

The RNA segments, according to Kawaoka, form in a distinct pattern abutting the membrane of the virus. They are always arranged in a circle of seven surrounding another segment for a total of eight RNA fragments.

"It was not really known whether the fragments were coming as a set," explains Kawaoka, whose team conducted the work using a long-studied influenza A virus, the family responsible for regular influenza outbreaks, including such medical calamities as the 1918 influenza pandemic.

The fact that the virus requires a systematic -- as opposed to a random -- method of assembly opens the door to the development of new antiviral drugs and the harnessing of benign influenza viruses as gene vectors to optimize vaccine production, Kawaoka says.

"We need to have more antivirals for influenza," according to Kawaoka, "and as these segments get incorporated into the particle as a set, it suggests these elements could be a target for disruption. There must be a genetic element in each of the eight segments that allows them to interact."

What’s more, scientists have been exploring the possibility of using strains of influenza to ferry genes from one virus to another to speed and optimize vaccine production. More efficient methods of vaccine production will be critical should a global outbreak such as the "Spanish " flu pandemic of 1918 recur. That pandemic killed an estimated 30-50 million people.

Knowing how influenza A viruses package their genetic contents, and knowing that they do so systematically, suggests it may be possible, by manipulating key genetic elements, to quickly engineer viruses that can be used to mass produce vaccines. Researchers have been trying to make viral vectors using nine genetic segments, a strategy that has never worked, Kawaoka notes.

"To develop an influenza virus vector, we have to stick to this eight-segment concept," he says.

Such a strategy may be useful for developing vaccines for a range of diseases, including HIV, the virus that causes AIDS, Kawaoka adds.

The new work, according to Kawaoka, benefited from a critical observation made possible by the dissection of the virus and its virions. The virus particles, when observed as a cross section, always displayed the circle of seven RNA fragments surrounding another segment pattern.

"No one has identified this before, perhaps because no one has ever tried to make serial sections of the virus."

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>