Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment of Down syndrome in mice restores nerve growth in cerebellum

25.01.2006


Researchers at Johns Hopkins restored the normal growth of specific nerve cells in the cerebellum of mouse models of Down syndrome (DS) that were stunted by this genetic condition. The cerebellum is the rear, lower part of the brain that controls signals from the muscles to coordinate balance and motor learning.



The finding is important, investigators say, because the cells rescued by this treatment represent potential targets for future therapy in human babies with DS. And it suggests that similar success for other DS-related disruptions of brain growth, such as occurs in the hippocampus, could lead to additional treatments - perhaps prenatally - that restore memory and the ability to orient oneself in space.

DS is caused by an extra chromosome 21, a condition called trisomy - a third copy of a chromosome in addition to the normal two copies. Children with DS have a variety of abnormalities, such as slowed growth, abnormal facial features and mental retardation. The brain is always small and has a greatly reduced number of neurons.


A report on the Hopkins work with trisomic mice, led by Roger H. Reeves, Ph.D., professor in the Department of Physiology and the McKusick-Nathans Institute for Genetic Medicine at Hopkins, appears in the January 24 issue of the Proceedings of the National Academy of Sciences (PNAS).

Reeves and his team used an animal model of DS called the Ts65Dn trisomic mouse to show that pre-nerve cells called granule cell precursors (GCP) fail to grow correctly in response to stimulation by a natural growth-triggering protein. This protein, called Sonic hedgehog (Shh), normally activates the so-called Hedgehog pathway of signals in these cells. These signals stimulate mitosis (cell division) and multiplication of the cells in the growing, newborn brain, according to the researchers.

The GCP originate near the surface of the cerebellum and migrate deeper into the brain to form the internal granule layer (IGL), the researchers note. Therefore, the team studied the growth of the cerebellum in Ts65Dn trisomic mice at seven time points -- beginning at birth - to determine when GCP abnormalities first occurred. The IGL was similar in both normal and Ts65Dn mice at birth, but was significantly reduced in the trisomic mice by day six after birth.

Furthermore, the researchers found that the reduced number of GCP in these mice compared to normal mice was not due to cell death; rather, there were 21 percent fewer GCP undergoing cell division in Ts65Dn mice. This suggested that stimulating these cells might restore normal numbers of GCP, according to Reeves.

The Hopkins team then showed in test-tube experiments that GCP from the brains of Ts65Dn mice had a significantly lower response to increasing concentrations of a potent form of Shh called ShhNp. That is, increasing concentrations of ShhNp triggered increasing rates of mitosis. Despite their lower response, trisomic cells did show a dose response with increasing ShhNp concentrations.

"The fact that trisomic GCP responded to stimulation of their Hedgehog pathway even in a reduced way is significant," says Reeves, the senior author of the PNAS paper. "It suggested that these cells could be stimulated to reach normal levels of cell division by artificially increasing their exposure to Hedgehog growth factor."

Based on this initial discovery, the team injected into newborn Ts65Dn mice a molecule that stimulates the Hedgehog pathway to trigger cell growth. Treatment of the trisomic mice with this molecule, called SAG 1.1, restored both the numbers of GCP and the number of GCP cells undergoing mitosis to levels seen in normal mice by six days after birth.

"The normal mouse cerebellum attains about a third of its adult size in the first week after birth," says Randall J. Roper, Ph.D. "This is the time during which SAG 1.1 treatment of Ts65Dn restored GCP populations and the rate of mitosis of those cells," he adds. "However, further research is needed to determine if it’s possible to reverse the effects of trisomy in other parts of the DS mouse." Roper is a postdoctoral fellow in the laboratory of Reeves and a co-first author of the PNAS paper.

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/mediaII/RSSinstructions.html

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>