Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duck-billed dino crests not linked to sense of smell

25.01.2006


University of Toronto study dispels decades-old theory



After decades of debate, a U of T researcher has finally determined that duck-billed dinosaurs’ massive but hollow crests had nothing to do with what many scientists suspected -- the sense of smell.

Speculation about their function has led to theories that the crests functioned as everything from brain coolers to snorkels for underwater feeding. Now, David Evans, a PhD student in zoology at the University of Toronto at Mississauga, has been able to use a reconstructed brain cavity to rule out one historically popular theory: that the crests evolved to increase the animal’s sense of smell. "From the brain case, there’s no indication that the nerves curled upwards into the crest, as we would expect if the crest was used for the sense of smell," Evans says.


"It appears that the brain changed very little from their non-crested dinosaur ancestors, and that the primary region of the sense of smell was located right in front of the eyes – and coincidentally, that’s where it is in birds, crocodiles, mammals and basically all four-legged animals."

Evans studied fossils from a group of herbivorous dinosaurs called lambeosaurs, which are often referred to as crested duck-billed dinosaurs. Lambeosaurs are easily recognizable for their large cranial crests, which contain elongated nasal passages and loop over their skull. Duck-billed dinosaurs are sometimes referred to as the "Cows of the Cretaceous period" and lived 85 million to 65 million years ago.

Evans reconstructed the dinosaurs’ brain cavity using well-preserved fragments of fossilized bone and created the first-ever cast of the lambeosaur brain, which is approximately the size of a human fist. The findings add weight to two currently popular theories: that the crests were used to create resonant sounds to attract mates or warn of predators, or that they were used for visual display in mate selection or species recognition, similar to feather crests in some birds.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utm.utoronto.ca

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>