Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clawed frog helps Fanconi anemia research make leaps

25.01.2006


OHSU scientists using Xenopus eggs demonstrate Fanconi genes’ importance to DNA duplication, repair



A large, clawed frog is helping Oregon Health & Science University researchers gather a princely sum of knowledge on Fanconi anemia, a rare, genetic, cancer-susceptibility syndrome.

Scientists in the OHSU School of Medicine’s Department of Biochemistry and Molecular Biology are the first to report a new approach using eggs of the African clawed frog, which goes by the Latin name Xenopus laevis, to understand how the Fanconi anemia proteins ensure that DNA is replicated properly, according to a study published this month in the journal Molecular and Cellular Biology.


The international team is led by the OHSU laboratory of Maureen Hoatlin, Ph.D. Using extracts from Xenopus eggs and chemically triggering DNA copying, the team showed that the Fanconi proteins function to prevent accumulation of breaks in DNA strands that arise even during normal replication. Fanconi anemia is thought to be the result of a defect in the Fanconi genes’ ability to repair DNA damage.

Hoatlin said there are many advantages to using the frogs’ eggs, instead of human cells, to study Fanconi anemia.

"In human cells, most of the Fanconi proteins are hard to detect, so you have to grow millions of cells over long periods of time to collect enough to study," she said. "The other problem is that cultured human cells are at all different stages of the cell cycle. The bulk of the cells are not rapidly dividing, and it’s only when cells are dividing that the Fanconi proteins are usually at their highest expression and activity."

In Xenopus eggs, however, Fanconi proteins are stockpiled in preparation for the rapid divisions that occur after fertilization. Plus, the divisions occur at the same time, or synchronously, allowing naturally regulated stages of division to be studied simultaneously.

"It’s very hard to synchronize mammalian cells," Hoatlin added. "Also, unfortunately for Fanconi researchers, methods used to synchronize cells are usually also the ways you might damage the DNA in cells, whereas this system allows us to look at unperturbed replication."

The use of Xenopus eggs as a cell-free system for studying checkpoints in the DNA damage pathway is nothing new. Since the mid-1980s, scientists have been using the BB-sized, black-and-white, bead-like eggs to probe orchestration of the DNA replication process, something not as easily done in mammalian cells.

Since a Xenopus egg isn’t fertilized until after it is laid outside the body of the female frog, it’s in a relative state of suspension until it is fertilized. During this time, when the cell cycle is arrested, scientists can use chemicals and a centrifuge machine to keep its DNA from replicating. This creates a convenient extract rich in all the essential components ready for full replication.

Then, by chemically activating the extract and adding sperm DNA from the male frog, the proteins in the extract unwind the DNA and the replication process is off and running under the watchful eyes of the researchers.

"That’s just the beginning of what we want to do with these extracts to study how the Fanconi proteins work," Hoatlin said. "You can control the extract with chemicals or by removing proteins with specific antibodies. It’s a very powerful system."

In the Molecular and Cellular Biology paper, Hoatlin’s team identified many of the Xenopus versions of the Fanconi genes and found that they were very similar to the human counterparts by sequence and behavior. For example, the Fanconi proteins were drawn to the DNA once the copying process began. By adding a protein called geminin to the extract, which prevents the assembly of protein complexes essential to the beginning steps of replication, the scientists found the Fanconi proteins no longer accumulated on the DNA, even if the DNA was damaged.

The implication, Hoatlin pointed out, is that even if the DNA is damaged, "unless there’s replication, the Fanconi proteins don’t recognize the damage."

"We wanted to develop an approach that would allow us to determine how the Fanconi proteins assemble on replicating DNA and what proteins control the important steps. These extracts give us the tool we need for those experiments," she said. In fact, in the new Molecular and Cellular Biology study, Hoatlin’s lab already found that an important regulator of the cell’s DNA damage-sensing mechanism controls some, but not all, of the Fanconi protein’s arrival on replicating DNA.

Stacie Stone, an OHSU graduate student and co-lead author of the study, believes Hoatlin’s lab, where she has worked with frogs for more than two years, will continue to yield discoveries that may someday lead to a treatment of certain cancers and for Fanconi anemia, a devastating disease that primarily affects children. The lab already joined forces with other labs to isolate several of the dozen genes known to exist in the Fanconi pathway.

"Really, there are not a whole lot of labs using the Xenopus extract approach yet," Stone said. "There are so many experiments we’d like to do now." For example, Alexandra Sobeck, Ph.D., the study’s other co-lead author and a scientist in Hoatlin’s lab, is examining the order of assembly of Fanconi proteins on DNA and how the Fanconi proteins are activated in response to DNA damage.

"What I’m seeing is that Fanconi proteins work together with other important protein complexes," Sobeck added. "Every day is exciting."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>