Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pleasing plant shapes explained by new computer model

25.01.2006


Flowers are innately beautiful to the human eye, but how does a sunflower achieve its stunning disc of intersecting spirals or a daisy its delicate symmetry?



That was the question tackled by University of Calgary computer scientists, who have answered one of biology’s enduring questions with an animated model that provides the most detailed simulation of how plants grow into recognizable shapes.

In the article "A plausible model of phyllotaxis" published in this week’s edition of the Proceedings of the National Academy of Sciences, University of Calgary PhD student Richard Smith and Computer Science professor Dr. Przemyslaw Prusinkiewicz, together with their collaborators from the Institute of Plant Science in Berne, Switzerland (Soazig Guyomarc’h, Therese Mandel, Didier Reinhardt, and professor Cris Kuhlemeier), present the first model to show how plants achieve phyllotaxis – the unique arrangement of lateral organs around a central axis that results in the spiral patterns seen in most plants – beginning at the molecular-level.


"Biologists have many theories about why phyllotaxis exists but have always wondered how it happens," said Smith. "This model is exciting because it proposes a mechanism that works and can be used to try and prove some of the biological theories about the growth process."

Smith and Prusinkiewicz worked with the botanists in Switzerland to create a three-dimensional simulation of plant growth at the microscopic scale, simulating cell division and showing how concentrations of the fundamental plant growth hormone auxin appear at regularly-spaced intervals. This creates the striking spiral patterns of seeds observed in sunflowers, daisies, and many other plants. Other patterns, such as branching at right angles observed in lilac branching, can be also be simulated using different parameter values.

The subject of the study was a plant called Arabidopsis, a small white-flowered plant that is to the world of botany what the fruit fly and white mouse are to zoology.

The scientists believe their model will enhance biological experiments by providing a tool botanists can use to complement and interpret their traditional laboratory experiments. It also promises to lead to accurate models of how other organisms, including animals, develop from primordial stem cells.

"This was a great example of the synergy you can have between biology and computer science and how the tools of one discipline can be used to answer questions in another," said Prusinkiewicz, who specializes in computer simulations and visualizations in plant biology. "

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.pnas.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>