Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pleasing plant shapes explained by new computer model


Flowers are innately beautiful to the human eye, but how does a sunflower achieve its stunning disc of intersecting spirals or a daisy its delicate symmetry?

That was the question tackled by University of Calgary computer scientists, who have answered one of biology’s enduring questions with an animated model that provides the most detailed simulation of how plants grow into recognizable shapes.

In the article "A plausible model of phyllotaxis" published in this week’s edition of the Proceedings of the National Academy of Sciences, University of Calgary PhD student Richard Smith and Computer Science professor Dr. Przemyslaw Prusinkiewicz, together with their collaborators from the Institute of Plant Science in Berne, Switzerland (Soazig Guyomarc’h, Therese Mandel, Didier Reinhardt, and professor Cris Kuhlemeier), present the first model to show how plants achieve phyllotaxis – the unique arrangement of lateral organs around a central axis that results in the spiral patterns seen in most plants – beginning at the molecular-level.

"Biologists have many theories about why phyllotaxis exists but have always wondered how it happens," said Smith. "This model is exciting because it proposes a mechanism that works and can be used to try and prove some of the biological theories about the growth process."

Smith and Prusinkiewicz worked with the botanists in Switzerland to create a three-dimensional simulation of plant growth at the microscopic scale, simulating cell division and showing how concentrations of the fundamental plant growth hormone auxin appear at regularly-spaced intervals. This creates the striking spiral patterns of seeds observed in sunflowers, daisies, and many other plants. Other patterns, such as branching at right angles observed in lilac branching, can be also be simulated using different parameter values.

The subject of the study was a plant called Arabidopsis, a small white-flowered plant that is to the world of botany what the fruit fly and white mouse are to zoology.

The scientists believe their model will enhance biological experiments by providing a tool botanists can use to complement and interpret their traditional laboratory experiments. It also promises to lead to accurate models of how other organisms, including animals, develop from primordial stem cells.

"This was a great example of the synergy you can have between biology and computer science and how the tools of one discipline can be used to answer questions in another," said Prusinkiewicz, who specializes in computer simulations and visualizations in plant biology. "

Grady Semmens | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>