Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system response to viral DNA is unique

25.01.2006


The human body has a unique immune system response to foreign DNA, suggesting that DNA viruses and RNA viruses are detected by different mechanisms, Yale School of Medicine researchers report this week in Immunity.



The researchers also found that DNA recognition might be used to detect invasive bacteria in addition to viruses, according to Daniel Stetson, a post doctoral fellow in the Section of Immunobiology and lead author of the study.

Although there are countless types of viruses, they can all be placed in two categories based on the type of nucleic acids that comprise their genome: viruses made of RNA and viruses made of DNA. Infected cells sense the presence of foreign nucleic acids as viruses replicate inside them and distill the problem of recognizing a dizzying array of viruses into a relatively simple mechanism for turning on the immune response.


"It is well established that such a pathway exists for detection of viral RNA inside infected cells," Stetson said. "In contrast, very little is known about whether cells can detect foreign intracellular DNA or how this system might function."

Stetson and Ruslan Medshitov, professor of immunobiology, a Howard Hughes Institute investigator, and senior author of the study, compared the innate immune response to intracellular DNA with other virus recognition pathways.

"We found that this novel pathway seems to function differently from all other known nucleic acid sensors," Stetson said. "The unique immune response activated by foreign DNA suggests that DNA viruses and RNA viruses are detected by different mechanisms."

Stetson said one important question raised by these findings is how this newly described system avoids responding to genomic DNA that is contained within all cells.

"If this ’tolerance’ to self DNA were to break down, cells might mount an antiviral response against their own DNA," he said. "Further characterization of this pathway will shed light on the mechanisms of antiviral responses and how cells discern viral and self-DNA."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>