Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activation of a protein solidifies fear memory in the brain

25.01.2006


When activated, a specific protein in the brain enhances long-term storage of fearful memories and strengthens previously established fearful memories, Yale School of Medicine researchers report this week in Nature Neuroscience.



"This report is the first to demonstrate evidence of enhancements in memory reconsolidation in the brain," said the senior author, Jane Taylor, associate professor in the Department of Psychiatry. "Understanding these molecular mechanisms may provide critical insights into psychiatric disorders."

She said recent data suggest that memories can continue to be changed or eliminated long after they have been formed, or consolidated. Based on findings that suggest memories are susceptible to loss after retrieval, a mechanism that is required to maintain and place back memories into long-term storage has been proposed, Taylor said.


"This ’reconsolidation’ process is supported by studies suggesting that disruption of cellular functions known to be required for memory storage after retrieval of a memory can cause a specific loss of that memory," she said.

Taylor and her colleagues found that within the amygdala, a brain region known to be critically involved in the creation and storage of fearful memories, selective activation of protein kinase A (PKA) is sufficient to enhance memory reconsolidation and strengthen a previously established fearful memory. Conversely, inhibiting PKA in the amygdala disrupted memory reconsolidation.

"These findings show bidirectional behavioral plasticity after memory retrieval," Taylor said. "Moreover, we find that amygdalar PKA activation does not affect other memory processes after retrieval, including extinction of fear memory, further showing that our findings are specific for a reconsolidation process."

She said enhancement of reconsolidation may contribute to the development of maladaptive memories in psychiatric disorders such as post-traumatic stress disorder, depression and drug addiction.

"Additionally, the ability to strengthen memories by retrieval has important implications for psychotherapies," she said.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>