Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Activation of a protein solidifies fear memory in the brain


When activated, a specific protein in the brain enhances long-term storage of fearful memories and strengthens previously established fearful memories, Yale School of Medicine researchers report this week in Nature Neuroscience.

"This report is the first to demonstrate evidence of enhancements in memory reconsolidation in the brain," said the senior author, Jane Taylor, associate professor in the Department of Psychiatry. "Understanding these molecular mechanisms may provide critical insights into psychiatric disorders."

She said recent data suggest that memories can continue to be changed or eliminated long after they have been formed, or consolidated. Based on findings that suggest memories are susceptible to loss after retrieval, a mechanism that is required to maintain and place back memories into long-term storage has been proposed, Taylor said.

"This ’reconsolidation’ process is supported by studies suggesting that disruption of cellular functions known to be required for memory storage after retrieval of a memory can cause a specific loss of that memory," she said.

Taylor and her colleagues found that within the amygdala, a brain region known to be critically involved in the creation and storage of fearful memories, selective activation of protein kinase A (PKA) is sufficient to enhance memory reconsolidation and strengthen a previously established fearful memory. Conversely, inhibiting PKA in the amygdala disrupted memory reconsolidation.

"These findings show bidirectional behavioral plasticity after memory retrieval," Taylor said. "Moreover, we find that amygdalar PKA activation does not affect other memory processes after retrieval, including extinction of fear memory, further showing that our findings are specific for a reconsolidation process."

She said enhancement of reconsolidation may contribute to the development of maladaptive memories in psychiatric disorders such as post-traumatic stress disorder, depression and drug addiction.

"Additionally, the ability to strengthen memories by retrieval has important implications for psychotherapies," she said.

Jacqueline Weaver | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>