Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly’s beating heart helps identify human heart disease genes

24.01.2006


In a discovery that could greatly accelerate the search for genetic causes of heart disease, a multi-disciplinary Duke University research team has found that the common fruit fly can serve as a powerful new model for testing human genes implicated in heart disease.



The finding is important, the Duke team said, because the entire genome of the fruit fly is well understood and catalogued, enabling researchers to systemically screen genes to identify potential gene mutations or variants implicated in human heart disease. The achievement also raises the possible of rapid screening in fruit flies of drugs to treat heart disease, said the researchers.

The team’s bioengineers adapted an existing imaging technology to visualize in detail for the first time the beating of the heart of a fruit fly, an insect the size of a grain of rice. The fly’s heart is about the size of the period at the end of this sentence.


After perfecting the new visualization technique, the researchers inserted into the fly genome a mutated gene that causes dilated cardiomyopathy in humans. This condition is often the cause of heart failure in humans and is characterized by heart muscle that has greatly enlarged and therefore is unable to pump blood efficiently. The moving images revealed that fly heart looked and acted just like a human heart with the same condition.

"The difficulty in performing studies to find specific genes that cause disease in humans is that you need large families with members afflicted with the disease," said Matthew J. Wolf, M.D., Ph.D., Duke Medical Center cardiology fellow and first author of paper appearing Jan. 23, 2006, in the Early Edition of the Proceedings of the National Academy of Sciences. "This can be a quite a complex and laborious undertaking. Even in mouse models of human disease, the process of screening for genes can take a long time.

"However, fruit flies, with their well-documented genome and rapid life-cycle, have the potential to greatly speed the process of finding and verifying candidate human genes for heart disease," Wolf continued. "In our experiments, we were able to demonstrate for the first time that a mutated gene that causes a specific heart disease in a human causes the same disease in the fruit fly."

Senior author on the paper was cardiologist Howard Rockman, M.D. Other co-authors were fruit fly geneticist Hubert Amrein, Ph.D. in Duke Medical Center, and bioengineers Joseph Izatt, Ph.D. and Michael Choma, Ph.D. of Duke’s Pratt School of Engineering. The research was supported by the National Institutes of Health.

In recognition of his research, the American Heart Association bestowed upon Wolf its prestigious Louis N. and Arnold M. Katz Basic Research Prize in November during its annual scientific sessions. This is the second year in a row that a trainee in Rockman’s lab has won the Katz prize. Last year, Naga Prasad, Ph.D. received the award.

In the past, researchers could not accurately study heart disease in fruit flies because of an inability to accurately image heart function of a living adult fly. Past investigators have measured the size of the heart and then made assumptions about what was happening inside, or dissected flies after death.

For their experiments, the Duke team adapted a technology known as optical coherence tomography (OCT), which is commonly used to measure the thickness of the retina in the eye, to obtain detailed images of the beating heart of an adult, unanesthetized fly.

"After inserting into the fly the gene that we know is implicated in dilated cardiomyopathy in humans, we imaged the adult fly with this novel system and what we saw looked exactly like the same condition in humans," Wolf said. "We obtained clear images that looked similar to an echocardiography study of a human patient with heart failure."

According to Rockman, about 80 percent of the gene mutations known to cause disease in humans have an equivalent in the fruit fly.

"If there is a mutation in a gene that causes a disease in the fruit fly, then there is a very good chance that there is a corresponding gene in humans," Rockman said. "It is an enormous breakthrough to demonstrate that a human gene can induce disease in a fly. With this novel fruit fly model, we can now screen genes we believe are involved in human heart disease and test them in the fly model."

If a candidate human gene leads to the same physiological effects in the fly as it does in humans, researchers can then not only test different compounds or drugs, but do so much quicker than in other mammal models of disease.

"These findings have the potential to change the way we do genetic screening to identify candidate disease-causing genes," Rockman continued. "Never before have we been able to actually visualize in the fruit fly the actual physiologic changes caused by dilated cardiomyopathy."

The Duke team is currently screening the entire genome of the fruit fly for additional candidate genes involved with dilated cardiomyopathy, a process which should take another six to nine months.

"We are now screening the entire fruit fly genome gene by gene, and determining whether the removal of the gene or a mutated version results in heart failure in the fly," Wolf explained. "With this new model, we can rapidly correlate abnormal heart functioning with a specific gene mutation."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>