Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss researchers develop all-in-one remote control gene expression tool

24.01.2006


In an article appearing online today in the journal Nature Methods, researchers at the EPFL (Ecole Polytechnique Fédérale de Lausanne) unveil a powerful new tool that will facilitate genetic research and open up new avenues for the clinical treatment of genetic disease.



The researchers have combined several gene manipulation techniques and incorporated them into a single lentiviral vector – a gene delivery system partly derived from HIV. When injected into living cells – either in vitro or in vivo – the genetic material aboard the lentiviral vector joins the genetic material in the nucleus of the cell, causing the cell to express the protein encoded by the new gene. This versatile package can also carry bits of RNA that stop the cell from expressing one of its own genes, by way of RNA interference. But the cargo that makes this tool really novel and exciting is a fusion protein that acts as a kind of remote control. By administering an antibiotic, the genetic manipulation – either the transgenic material introduced by the lentivirus, or the gene silencing via RNA interference--can be switched on or off at will.

An all-in-one tool like this – efficiently combining techniques that each previously required separate delivery – will likely see wide use in genetic research and in clinical gene therapy applications. It is particularly applicable for use in stem cells, embryonic cells and tissues and organs that are amenable to genetic transduction.


"It’s a flexible way to regulate the expression of genes in a cell," says EPFL professor Didier Trono. "The lentiviral vector integrates in an irreversible fashion into the cell and is then part of its genetic cargo and part of the genetic cargo of all its progeny."

The efficiency of the lentiviral vector will make it easier to create transgenic animals used in studying human genetic diseases such as Parkinson’s, Alzheimer’s or Huntington’s diseases. The expression of the gene can be turned on and off by feeding the animal an antibiotic. Likewise genes that express pathogenic proteins can be conditionally silenced, allowing researchers to study possible new therapeutic approaches.

In cancer research this tool could be used to study gene function in tumor cells and for generating in vivo tumor models for drug screening and delivery.

In another application, dying cells (such as neurons) can be rescued by introducing a gene that expresses a growth factor. Thanks to the remote control carried in the lentivirus the expression of this growth factor can now be turned off when the desired effect is achieved, thus preventing unharnessed growth – otherwise known as cancer.

"It’s an extremely polymorphic tool, useful in testing therapies and in preclinical studies," says Trono. "Using it we can control the gene expression in vivo in an extraordinary and sensitive way."

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>