Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swiss researchers develop all-in-one remote control gene expression tool


In an article appearing online today in the journal Nature Methods, researchers at the EPFL (Ecole Polytechnique Fédérale de Lausanne) unveil a powerful new tool that will facilitate genetic research and open up new avenues for the clinical treatment of genetic disease.

The researchers have combined several gene manipulation techniques and incorporated them into a single lentiviral vector – a gene delivery system partly derived from HIV. When injected into living cells – either in vitro or in vivo – the genetic material aboard the lentiviral vector joins the genetic material in the nucleus of the cell, causing the cell to express the protein encoded by the new gene. This versatile package can also carry bits of RNA that stop the cell from expressing one of its own genes, by way of RNA interference. But the cargo that makes this tool really novel and exciting is a fusion protein that acts as a kind of remote control. By administering an antibiotic, the genetic manipulation – either the transgenic material introduced by the lentivirus, or the gene silencing via RNA interference--can be switched on or off at will.

An all-in-one tool like this – efficiently combining techniques that each previously required separate delivery – will likely see wide use in genetic research and in clinical gene therapy applications. It is particularly applicable for use in stem cells, embryonic cells and tissues and organs that are amenable to genetic transduction.

"It’s a flexible way to regulate the expression of genes in a cell," says EPFL professor Didier Trono. "The lentiviral vector integrates in an irreversible fashion into the cell and is then part of its genetic cargo and part of the genetic cargo of all its progeny."

The efficiency of the lentiviral vector will make it easier to create transgenic animals used in studying human genetic diseases such as Parkinson’s, Alzheimer’s or Huntington’s diseases. The expression of the gene can be turned on and off by feeding the animal an antibiotic. Likewise genes that express pathogenic proteins can be conditionally silenced, allowing researchers to study possible new therapeutic approaches.

In cancer research this tool could be used to study gene function in tumor cells and for generating in vivo tumor models for drug screening and delivery.

In another application, dying cells (such as neurons) can be rescued by introducing a gene that expresses a growth factor. Thanks to the remote control carried in the lentivirus the expression of this growth factor can now be turned off when the desired effect is achieved, thus preventing unharnessed growth – otherwise known as cancer.

"It’s an extremely polymorphic tool, useful in testing therapies and in preclinical studies," says Trono. "Using it we can control the gene expression in vivo in an extraordinary and sensitive way."

Mary Parlange | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>