Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss researchers develop all-in-one remote control gene expression tool

24.01.2006


In an article appearing online today in the journal Nature Methods, researchers at the EPFL (Ecole Polytechnique Fédérale de Lausanne) unveil a powerful new tool that will facilitate genetic research and open up new avenues for the clinical treatment of genetic disease.



The researchers have combined several gene manipulation techniques and incorporated them into a single lentiviral vector – a gene delivery system partly derived from HIV. When injected into living cells – either in vitro or in vivo – the genetic material aboard the lentiviral vector joins the genetic material in the nucleus of the cell, causing the cell to express the protein encoded by the new gene. This versatile package can also carry bits of RNA that stop the cell from expressing one of its own genes, by way of RNA interference. But the cargo that makes this tool really novel and exciting is a fusion protein that acts as a kind of remote control. By administering an antibiotic, the genetic manipulation – either the transgenic material introduced by the lentivirus, or the gene silencing via RNA interference--can be switched on or off at will.

An all-in-one tool like this – efficiently combining techniques that each previously required separate delivery – will likely see wide use in genetic research and in clinical gene therapy applications. It is particularly applicable for use in stem cells, embryonic cells and tissues and organs that are amenable to genetic transduction.


"It’s a flexible way to regulate the expression of genes in a cell," says EPFL professor Didier Trono. "The lentiviral vector integrates in an irreversible fashion into the cell and is then part of its genetic cargo and part of the genetic cargo of all its progeny."

The efficiency of the lentiviral vector will make it easier to create transgenic animals used in studying human genetic diseases such as Parkinson’s, Alzheimer’s or Huntington’s diseases. The expression of the gene can be turned on and off by feeding the animal an antibiotic. Likewise genes that express pathogenic proteins can be conditionally silenced, allowing researchers to study possible new therapeutic approaches.

In cancer research this tool could be used to study gene function in tumor cells and for generating in vivo tumor models for drug screening and delivery.

In another application, dying cells (such as neurons) can be rescued by introducing a gene that expresses a growth factor. Thanks to the remote control carried in the lentivirus the expression of this growth factor can now be turned off when the desired effect is achieved, thus preventing unharnessed growth – otherwise known as cancer.

"It’s an extremely polymorphic tool, useful in testing therapies and in preclinical studies," says Trono. "Using it we can control the gene expression in vivo in an extraordinary and sensitive way."

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>