Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Good Shape

23.01.2006


Metal atom dictates the structure: new concept for the construction of enzyme inhibitors



Complex natural products usually adopt precisely defined spatial structures that are of critical importance to their biological function. A substrate must fit precisely into the “pocket” of an enzyme in order to be converted. The same is true of drugs meant to influence the function of enzymes. The biggest challenge in this is to develop effective methods for the synthesis of agents with tailored three-dimensional structures. A team of British and American researchers headed by Eric Meggers is using metal atoms to give their agents the right shape. They have now successfully used this concept to develop a specific inhibitor for protein kinase Pim-1 based on a ruthenium complex.

Protein kinases play an important role in a large number of cellular regulatory mechanisms. The natural compound staurosporine is an effective inhibitor for the adenosine triphosphate (ATP) dependent protein kinases because it fits precisely into the ATP-binding cavity of these enzymes. Meggers and his team at the University of Pennsylvania (USA) and Oxford University (UK) used the structure of staurosporine as the starting point for the development of a more simply constructed metal-containing inhibitor. Staurosporine consists of a flat aromatic ring system and a sugar component. The scientists replaced the sugar with a ruthenium atom bound to two ligands. The ring system, which was slightly altered, also binds to the ruthenium as a ligand. Like a clamp, it surrounds the metal from two sides. Careful selection of the two other ligands—carbon monoxide and an five-membered aromatic ring—allowed the researchers to give their ruthenium complex a form that mimics the spatial structure of staurosporine and also fits into the ATP-binding cavity.


The new ruthenium complex exists in two forms that are mirror images of each other. Tests with more than 50 different kinases showed that the “left-hand” version very specifically inhibits an enzyme called Pim-1 kinase—more than two orders of magnitude more effectively than staurosporine. Pim-1 kinase participates in the regulation of cell division: its inhibition could be advantageous in fighting certain tumors.

“The metal in such complexes is tightly bound so that it cannot be easily released and is supposed to be nontoxic,” stresses Meggers. “Its only job is to hold the individual ligands in the right spatial arrangement. In comparison to the purely organic compounds on which their structure is based, organometallic complexes are more simply constructed and are correspondingly easier to synthesize.”

Author: Eric Meggers, University of Pennsylvania, Philadelphia (USA)
Title: Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1
Angewandte Chemie International Edition, doi: 10.1002/anie.200503468

Eric Meggers | Angewandte Chemie
Further information:
http://www.sas.upenn.edu/~meggers/
http://www.wiley.co.uk

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>