Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Good Shape

23.01.2006


Metal atom dictates the structure: new concept for the construction of enzyme inhibitors



Complex natural products usually adopt precisely defined spatial structures that are of critical importance to their biological function. A substrate must fit precisely into the “pocket” of an enzyme in order to be converted. The same is true of drugs meant to influence the function of enzymes. The biggest challenge in this is to develop effective methods for the synthesis of agents with tailored three-dimensional structures. A team of British and American researchers headed by Eric Meggers is using metal atoms to give their agents the right shape. They have now successfully used this concept to develop a specific inhibitor for protein kinase Pim-1 based on a ruthenium complex.

Protein kinases play an important role in a large number of cellular regulatory mechanisms. The natural compound staurosporine is an effective inhibitor for the adenosine triphosphate (ATP) dependent protein kinases because it fits precisely into the ATP-binding cavity of these enzymes. Meggers and his team at the University of Pennsylvania (USA) and Oxford University (UK) used the structure of staurosporine as the starting point for the development of a more simply constructed metal-containing inhibitor. Staurosporine consists of a flat aromatic ring system and a sugar component. The scientists replaced the sugar with a ruthenium atom bound to two ligands. The ring system, which was slightly altered, also binds to the ruthenium as a ligand. Like a clamp, it surrounds the metal from two sides. Careful selection of the two other ligands—carbon monoxide and an five-membered aromatic ring—allowed the researchers to give their ruthenium complex a form that mimics the spatial structure of staurosporine and also fits into the ATP-binding cavity.


The new ruthenium complex exists in two forms that are mirror images of each other. Tests with more than 50 different kinases showed that the “left-hand” version very specifically inhibits an enzyme called Pim-1 kinase—more than two orders of magnitude more effectively than staurosporine. Pim-1 kinase participates in the regulation of cell division: its inhibition could be advantageous in fighting certain tumors.

“The metal in such complexes is tightly bound so that it cannot be easily released and is supposed to be nontoxic,” stresses Meggers. “Its only job is to hold the individual ligands in the right spatial arrangement. In comparison to the purely organic compounds on which their structure is based, organometallic complexes are more simply constructed and are correspondingly easier to synthesize.”

Author: Eric Meggers, University of Pennsylvania, Philadelphia (USA)
Title: Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1
Angewandte Chemie International Edition, doi: 10.1002/anie.200503468

Eric Meggers | Angewandte Chemie
Further information:
http://www.sas.upenn.edu/~meggers/
http://www.wiley.co.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>