Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’molecular switch’ protein protects the heart from major cardiovascular damage

23.01.2006


U-M researchers report dramatic benefits from a single amino acid substitution in troponin I cardiac muscle protein



It’s just one little amino acid, but it makes all the difference in protecting the heart from the harmful effects of heart attack and cardiac failure. Researchers from the University of Michigan Medical School suggest this amino acid, called histidine, could be the key to a new therapy for cardiovascular disease.

In a study to be published Jan. 22 in Nature Medicine as an advance online publication, U-M scientists describe how they created a modified form of a heart muscle protein called troponin I and how it improved cardiac function in mice and in damaged human heart cells. The secret was using genetic engineering technology to replace one amino acid called alanine, found in the adult form of troponin I, with a histidine from the fetal form of the same protein.


"The most important finding of our study was that this modified troponin I protein dramatically improved heart function under a variety of conditions associated with cardiovascular damage and heart failure," says Sharlene Day, M.D., an assistant professor of internal medicine in U-M’s Cardiovascular Center and co-first author of the Nature Medicine paper.

"This study provides the first evidence that a single histidine substitution in troponin I can improve short and long-term cardiac function in laboratory mice with heart failure," says Joseph M. Metzger, Ph.D. – a professor of molecular and integrative physiology and of internal medicine in the U-M Medical School. "The fact that we also were able to rescue the functionality of damaged human heart cells is a significant advance."

Metzger believes U-M’s modified troponin I protein could become the basis of a new gene therapy or cell-based therapy for heart disease and heart failure. Progressive heart failure affects 4.8 million Americans. Despite current medical and surgical therapies, mortality remains high.

Troponin I is an important cardiac muscle regulatory protein that controls the calcium sensitivity of heart muscle cells. The ability to respond to calcium is important, because it’s what causes the heart to contract efficiently and pump blood through the body. When blood flow to the heart is compromised, such as during a heart attack, acid accumulates in cardiac cells – a condition called acidosis. This causes cells to become less responsive to calcium, which can lead ultimately to heart damage and cardiac failure.

During embryonic development, the fetal form of troponin I is present in the fetal heart, which makes it more resistant than the adult heart to the harmful effects of acidosis and low oxygen that can occur during pregnancy or delivery. This means that fetal hearts largely retain their ability to respond to calcium under adverse conditions.

"Shortly before or after birth, the gene for fetal troponin I is turned off and the adult gene is turned on," says Margaret Westfall, Ph.D., an assistant professor of surgery in U-M’s Cardiovascular Center and co-first author of the Nature Medicine paper. "Although the adult form of troponin I is more susceptible to the harmful effects of acidosis, it has other important properties that enable the adult heart to respond to hormones during exercise and periods of stress."

In essence, U-M researchers created a "genetic hybrid" of troponin I to combine the advantages of the fetal and adult form of the protein. According to U-M scientists, the modified protein helps the heart respond to a harsh intracellular environment by boosting its performance during periods of stress.

"By making this single histidine substitution in the adult form of troponin I, we retain hormonal responsiveness and provide protection from acidosis in the same molecule," Day says. "Several heart conditions can cause acidosis in the adult heart, most notably when the heart is deprived of oxygen and nutrients due to compromised blood flow – a condition known as ischemia. When ischemia is prolonged, it can cause permanent heart muscle damage in the form of a heart attack."

"The transition from the fetal to adult form of troponin I worked well throughout most of human evolution, but the problem now is our Western lifestyle and diet, which can damage the heart," Metzger explains. "Plus, people live into their 80s or 90s, so there’s more time for ischemic heart disease and heart failure to develop."

In a series of experiments, U-M researchers studied the effects of the histidine substitution in troponin I on 1) transgenic mice with the modified form of the protein and normal littermates without the modified protein, 2) hearts removed from both types of research mice, and 3) heart cells called myocytes, which were isolated from rats and from severely damaged human hearts of U-M Health System patients who received heart transplants.

In experiments with isolated myocytes, Westfall used a virus to deliver the modified troponin I gene. When she analyzed cells for expression of troponin I with the histidine substitution, Westfall discovered that "you don’t need 100 percent gene replacement to see a biological effect in individual myofilaments. We see favorable effects at 20 percent to 50 percent replacement," she says.

To create the damaging conditions that develop in heart muscle cells when clogged blood vessels or a heart attack interrupt the heart’s oxygen supply, Day tied off one of the main arteries carrying blood to the hearts of mice in the study. Day found that hearts from transgenic mice performed far better after the procedure than hearts from mice without modified troponin I.

The U-M research team also found that hearts from transgenic mice contracted more efficiently and used less energy to perform more work than hearts from non-transgenic littermates.

The U-M research team is studying the effects of the genetically engineered troponin I protein in other research animals and exploring mechanisms responsible for its heart-protective effect. They believe the modified troponin I protein senses changes within cardiac muscle cells and responds by improving the cells’ ability to contract efficiently in response to stress.

The University of Michigan has filed a patent application on the genetically engineered troponin I protein and its method for regulating cardiac performance. U-M is looking for a commercialization partner to market the technology.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>