Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth, GlycoFi researchers make leap in protein bioengineering

23.01.2006


Investigators at Dartmouth’s Thayer School of Engineering, the Dartmouth-Hitchcock Medical Center, and the biotechnology firm GlycoFi, Inc., report a breakthrough in using yeast to produce antibodies with human sugar structures.



Antibodies are proteins with sugars attached to them, and they are emerging as a major class of drugs in the treatment of cancer. In the global effort to increase the potency of antibodies, the interdisciplinary work by the Dartmouth/GlycoFi team, published in the February issue of Nature Biotechnology, represents a major advance. The work shows that antibodies with increased cancer-killing ability can be produced by controlling the sugar structures that are attached to them.

"This work demonstrates, for the first time, that an antibody with human sugar structures can be produced in a non-mammalian host," says Tillman Gerngross, GlycoFi’s Chief Scientific Officer and professor of engineering at Dartmouth’s Thayer School.


Huijuan Li, the Associate Director of Analytical Development at GlycoFi and the lead author on the study, adds, "By controlling the sugar structures on antibodies we have shown that the antibodies ability to kill cancer cells can be significantly improved and that proteins can be optimized by controlling their sugar structures."

While the current report focuses on antibodies, the approach taken by the GlycoFi team can be applied to any therapeutic glycoprotein. Currently glycoproteins comprise about 70 percent of all approved therapeutic proteins and the therapeutic protein market is expected to grow at over 20 percent annually over the next decade, according to the researchers.

"GlycoFi is the world leader in protein glyco-engineering, and this work is an example of the exciting translational research that has been spun out of Dartmouth," says Gerngross.

GlycoFi was founded in 2000 by Dartmouth professors Gerngross and Charles Hutchison, professor emeritus of engineering and CEO of GlycoFi. The company continues to maintain its Dartmouth ties, and it is engaged in several ongoing collaborations with Dartmouth faculty. Gerngross says that the environment at Dartmouth is exceptional for bioengineers that seek to take basic life science discoveries and translate them into technologies that benefit patients.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu
http://www.glycofi.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>