Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful technique for multiplying adult stem cells may aid therapies

23.01.2006


Adult stem cells may be free of the ethical concerns that hamper embryonic stem cell research, but they still pose formidable scientific challenges. Chief among these is the doggedness with which adult stem cells differentiate into mature tissue the moment they’re isolated from the body. This makes it nearly impossible for researchers to multiply them in the laboratory. And because adult stem cells are so rare, that makes it difficult to use them for treating disease.



Now, researchers in the lab of Whitehead Institute Member and MIT professor of biology Harvey Lodish have discovered a way to multiply an adult stem cell 30-fold, an expansion that offers tremendous promise for treatments such as bone marrow transplants and perhaps even gene therapy.

"A 30-fold increase is ten times higher than anyone’s achieved before," says Lodish, senior author on the paper, which will be published January 22 online in Nature Medicine.


Unlike embryonic stem cells, adult stem cells are generally tissue-specific, each one destined to develop into several kinds of cells. Chengcheng Zhang, a postdoctoral researcher in the Lodish lab, was determined to develop a way to multiply adult stem cells once they’ve been isolated from tissue. Achieving this goal required some intricate laboratory sleuthing.

Zhang began by studying adult hematopoietic--blood cell forming--stem cells. Offspring of some of these cells develop into all of the red and white blood cells, while others form the immune system. Using fetal tissue from mice as the source of these cells, Zhang discovered a population of cells that were not stem cells, yet appeared to interact with stem cells, preserving and allowing them to multiply in the fetal environment. When he isolated the stem cells in the lab and cultured them in a dish by themselves, they died. When he mixed them with these newly discovered cells, they thrived. But how did these new cells manage to sustain the stem cells so dramatically?

Zhang used a microarray platform to search for genes that were active in these newly discovered cells, but not active in similar neighboring cells. Some such genes, he reasoned, might encode secreted proteins that sustained stem cells. Eventually, he located a number of such genes.

In the fall of 2003 and early 2005, Zhang reported in the journal Blood how one of these genes codes for a growth factor protein called IGF-2. When Zhang purified IGF-2 and added it in a solution to hematopoietic stem cells that he had isolated, the stem cells increased eight-fold in number.

Zhang then discovered that two more growth factor proteins, Angiopoietin-like 2 and –3, abbreviated as angpt12 and angpt13, were also abundantly expressed in these stem-cell supporting cells. When Zhang combined these two proteins with IGF-2 and added them to hematopoietic stem cells, the result was a 30-fold increase.

"People have been culturing and working with these cells for years, and never before have we seen such an increase," says Zhang.

A 30-fold expansion, if replicated in human cells, could open up a number of doors for researchers working on adult stem cells. Currently, patients with certain blood diseases are treated with stem cells. These stem cells can be acquired either from a donor’s bone marrow, or even from cord blood (donated cord blood, or the patient’s own). Still, in both these cases, the actual number of stem cells from a donor often falls short of the number needed to adequately treat the patient. This technique could directly address this problem.

Gene therapy is another area where these findings can be of immediate value, Lodish says.

With gene therapy, a genetic defect is corrected by administering a healthy version of the gene into a patient. For example, a physician isolates hematopoietic stem cells from a patient, introduces a harmless virus into them that expresses a correct version of the mutated gene, and then re-administers the stem cells back into the patients. While many clinical trials have succeeded, some ended tragically when the virus ended up activating a cancer-causing gene. Because of this, the Food and Drug Administration is not currently approving any gene-therapy clinical trials.

"If, before the stem cells have been re-introduced into the patients, the physicians could first multiply them in the lab, they could then run assays determining if the virus has landed in any undesirable places," says Lodish. "They could then discard those bad cells, and only administer the good ones to the patients."

But most importantly, these findings aid basic research. "We want to know all sorts of things, like what genes are active in this stem cell, or how this stem cell decides to develop into one kind of cell as opposed to another," says Lodish.

Lodish and his colleagues are collaborating with researchers at Lund University in Sweden to repeat these results with human cord blood.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>