Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Powerful technique for multiplying adult stem cells may aid therapies


Adult stem cells may be free of the ethical concerns that hamper embryonic stem cell research, but they still pose formidable scientific challenges. Chief among these is the doggedness with which adult stem cells differentiate into mature tissue the moment they’re isolated from the body. This makes it nearly impossible for researchers to multiply them in the laboratory. And because adult stem cells are so rare, that makes it difficult to use them for treating disease.

Now, researchers in the lab of Whitehead Institute Member and MIT professor of biology Harvey Lodish have discovered a way to multiply an adult stem cell 30-fold, an expansion that offers tremendous promise for treatments such as bone marrow transplants and perhaps even gene therapy.

"A 30-fold increase is ten times higher than anyone’s achieved before," says Lodish, senior author on the paper, which will be published January 22 online in Nature Medicine.

Unlike embryonic stem cells, adult stem cells are generally tissue-specific, each one destined to develop into several kinds of cells. Chengcheng Zhang, a postdoctoral researcher in the Lodish lab, was determined to develop a way to multiply adult stem cells once they’ve been isolated from tissue. Achieving this goal required some intricate laboratory sleuthing.

Zhang began by studying adult hematopoietic--blood cell forming--stem cells. Offspring of some of these cells develop into all of the red and white blood cells, while others form the immune system. Using fetal tissue from mice as the source of these cells, Zhang discovered a population of cells that were not stem cells, yet appeared to interact with stem cells, preserving and allowing them to multiply in the fetal environment. When he isolated the stem cells in the lab and cultured them in a dish by themselves, they died. When he mixed them with these newly discovered cells, they thrived. But how did these new cells manage to sustain the stem cells so dramatically?

Zhang used a microarray platform to search for genes that were active in these newly discovered cells, but not active in similar neighboring cells. Some such genes, he reasoned, might encode secreted proteins that sustained stem cells. Eventually, he located a number of such genes.

In the fall of 2003 and early 2005, Zhang reported in the journal Blood how one of these genes codes for a growth factor protein called IGF-2. When Zhang purified IGF-2 and added it in a solution to hematopoietic stem cells that he had isolated, the stem cells increased eight-fold in number.

Zhang then discovered that two more growth factor proteins, Angiopoietin-like 2 and –3, abbreviated as angpt12 and angpt13, were also abundantly expressed in these stem-cell supporting cells. When Zhang combined these two proteins with IGF-2 and added them to hematopoietic stem cells, the result was a 30-fold increase.

"People have been culturing and working with these cells for years, and never before have we seen such an increase," says Zhang.

A 30-fold expansion, if replicated in human cells, could open up a number of doors for researchers working on adult stem cells. Currently, patients with certain blood diseases are treated with stem cells. These stem cells can be acquired either from a donor’s bone marrow, or even from cord blood (donated cord blood, or the patient’s own). Still, in both these cases, the actual number of stem cells from a donor often falls short of the number needed to adequately treat the patient. This technique could directly address this problem.

Gene therapy is another area where these findings can be of immediate value, Lodish says.

With gene therapy, a genetic defect is corrected by administering a healthy version of the gene into a patient. For example, a physician isolates hematopoietic stem cells from a patient, introduces a harmless virus into them that expresses a correct version of the mutated gene, and then re-administers the stem cells back into the patients. While many clinical trials have succeeded, some ended tragically when the virus ended up activating a cancer-causing gene. Because of this, the Food and Drug Administration is not currently approving any gene-therapy clinical trials.

"If, before the stem cells have been re-introduced into the patients, the physicians could first multiply them in the lab, they could then run assays determining if the virus has landed in any undesirable places," says Lodish. "They could then discard those bad cells, and only administer the good ones to the patients."

But most importantly, these findings aid basic research. "We want to know all sorts of things, like what genes are active in this stem cell, or how this stem cell decides to develop into one kind of cell as opposed to another," says Lodish.

Lodish and his colleagues are collaborating with researchers at Lund University in Sweden to repeat these results with human cord blood.

David Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>