Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of MN researchers identify ataxia gene


Discovery offers potential to determine if President Lincoln would have developed the disease

Researchers at the University of Minnesota Medical School have discovered the gene responsible for a type of ataxia, an incurable degenerative brain disease affecting movement and coordination.

This is the first neurodegenerative disease shown to be caused by mutations in the protein â-III spectrin which plays an important role in the maintaining the health of nerve cells. The scientific discovery has historical implications as well--the gene was identified in an 11-generation family descended from the grandparents of President Abraham Lincoln, with the President having a 25 percent risk of inheriting the mutation.

"We are excited about this discovery because it provides a genetic test that will lead to improved patient diagnoses and gives us new insight into the causes of ataxia and other neurodegenerative diseases, an important step towards developing an effective treatment," said Laura Ranum, Ph.D., senior investigator of the study and professor of Genetics, Cell Biology and Development at the University of Minnesota.

Understanding the effects of this abnormal protein, which provides internal structure to cells, will clarify how nerve cells die and may provide insight into other diseases, including amyotrophic lateral sclerosis (Lou Gehrig’s disease) and Duchenne muscular dystrophy. The research will be published in the February print issue of Nature Genetics, and posted online Jan. 22, 2006.

Ataxia is a hereditary disease that causes loss of coordination resulting in difficulty with everyday tasks such as walking, speech, and writing. About 1 in 17,000 people have a genetic form of ataxia.

Spinocerebellar ataxia type 5 (SCA5) is a dominant gene disorder; if a parent has the disease, each of their children has a 50 percent chance of inheriting the mutation and developing ataxia sometime during their lifetime. The onset of SCA5 usually occurs between the ages of 30 and 50, but can appear earlier or later in life, with reported ages of onset ranging from 4 to more than 70 years of age.

Now that researchers have identified the specific mutation that causes SCA5, testing of patients at risk of developing this disease is possible before any symptoms appear. The availability of predictive testing allows people with a family history of the disease to determine whether they will develop the disease and whether their children are at risk of inheriting the mutation. In addition, the prognoses of the different types of ataxias vary greatly, so identifying the specific type of ataxia provides patients with a more accurate picture of what the future holds.

Ranum added: "Finding the SCA5 mutation in Lincoln’s family makes it possible to test Lincoln’s DNA – if it becomes available – to unequivocally determine if he carried the mutation and had or would have developed the disease." Biographical texts of Lincoln include descriptions of his uncoordinated and uneven gait, suggesting the possibility that he showed early features of the disease.

Ranum started this historical and scientific journey more than a decade ago. She and her colleagues John Day, M.D., Ph.D., University of Minnesota, and Larry Schut, M.D., CentraCare Clinic in St. Cloud, Minn., examined and collected DNA samples from more than 300 Lincoln family members who live across the country, tracking descendants from two major branches of the family.

Sara E. Buss | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>