Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers identify ataxia gene

23.01.2006


Discovery offers potential to determine if President Lincoln would have developed the disease



Researchers at the University of Minnesota Medical School have discovered the gene responsible for a type of ataxia, an incurable degenerative brain disease affecting movement and coordination.

This is the first neurodegenerative disease shown to be caused by mutations in the protein â-III spectrin which plays an important role in the maintaining the health of nerve cells. The scientific discovery has historical implications as well--the gene was identified in an 11-generation family descended from the grandparents of President Abraham Lincoln, with the President having a 25 percent risk of inheriting the mutation.


"We are excited about this discovery because it provides a genetic test that will lead to improved patient diagnoses and gives us new insight into the causes of ataxia and other neurodegenerative diseases, an important step towards developing an effective treatment," said Laura Ranum, Ph.D., senior investigator of the study and professor of Genetics, Cell Biology and Development at the University of Minnesota.

Understanding the effects of this abnormal protein, which provides internal structure to cells, will clarify how nerve cells die and may provide insight into other diseases, including amyotrophic lateral sclerosis (Lou Gehrig’s disease) and Duchenne muscular dystrophy. The research will be published in the February print issue of Nature Genetics, and posted online Jan. 22, 2006.

Ataxia is a hereditary disease that causes loss of coordination resulting in difficulty with everyday tasks such as walking, speech, and writing. About 1 in 17,000 people have a genetic form of ataxia.

Spinocerebellar ataxia type 5 (SCA5) is a dominant gene disorder; if a parent has the disease, each of their children has a 50 percent chance of inheriting the mutation and developing ataxia sometime during their lifetime. The onset of SCA5 usually occurs between the ages of 30 and 50, but can appear earlier or later in life, with reported ages of onset ranging from 4 to more than 70 years of age.

Now that researchers have identified the specific mutation that causes SCA5, testing of patients at risk of developing this disease is possible before any symptoms appear. The availability of predictive testing allows people with a family history of the disease to determine whether they will develop the disease and whether their children are at risk of inheriting the mutation. In addition, the prognoses of the different types of ataxias vary greatly, so identifying the specific type of ataxia provides patients with a more accurate picture of what the future holds.

Ranum added: "Finding the SCA5 mutation in Lincoln’s family makes it possible to test Lincoln’s DNA – if it becomes available – to unequivocally determine if he carried the mutation and had or would have developed the disease." Biographical texts of Lincoln include descriptions of his uncoordinated and uneven gait, suggesting the possibility that he showed early features of the disease.

Ranum started this historical and scientific journey more than a decade ago. She and her colleagues John Day, M.D., Ph.D., University of Minnesota, and Larry Schut, M.D., CentraCare Clinic in St. Cloud, Minn., examined and collected DNA samples from more than 300 Lincoln family members who live across the country, tracking descendants from two major branches of the family.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>