Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New compound stops brain cell degeneration in Alzheimer’s disease


Drug discovery researchers at Northwestern University have developed a novel orally administered compound specifically targeted to suppress brain cell inflammation and neuron loss associated with Alzheimer’s disease.

The compound is also rapidly absorbed by the brain and is non-toxic – important considerations for a central nervous system drug that might need to be taken for extended periods.

As described in the Jan. 11 issue of the Journal of Neuroscience, the compound, called MW01-5-188WH, selectively inhibits production of pro-inflammatory proteins called cytokines by glia, important cells of the central nervous system that normally help the body mount a response, but are overactivated in certain neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, stroke and traumatic brain injury.

The compound was designed and synthesized in the laboratory of D. Martin Watterson at Northwestern University Feinberg School of Medicine, using a synthetic chemistry platform developed in his lab by researchers at the Northwestern University Center for Drug Discovery and Chemical Biology (CDDCB) for the rapid discovery of new potential therapeutic compounds.

Watterson is co-director of the CDDCB, the J.G. Searle Professor of Molecular Biology and Biochemistry and professor of molecular pharmacology and biological chemistry at the Feinberg School.

The efficacy and safety of the compound in an animal model of Alzheimer’s disease was evaluated in collaboration with Linda J. Van Eldik, co-director of the CDDCB and professor of cell and molecular biology at Feinberg.

Besides providing a lead compound for drug development, the study has important implications for drug discovery in neurodegenerative diseases in general because it provides proof of concept that targeting over-production of cytokines by activated glia is a viable approach that has the potential to modulate disease onset and progression, the researchers said.

Decline of cognitive functions linked to the part of the brain called the hippocampus is a clinical hallmark of Alzheimer’s disease. The report demonstrates that targeting excessive glial activation can suppress brain inflammation and neuron dysfunction in the hippocampus and protect against cognitive decline in an animal model.

Neuron dysfunction can lead to further glia activation and contribute to further exacerbation of the disease process. The Northwestern researchers found that 188WH and related compounds slowed or reversed the progression of the neuroinflammatory cascade and reduced human amyloid beta-induced glia activation in a mouse specially designed to develop many of the signs of Alzheimer’s disease, including neuroinflammation, neuronal and synaptic degeneration and behavioral deficits.

The compound also restored normal levels of markers of synaptic dysfunction in the hippocampus, the area of the brain that helps regulate memory and is gradually destroyed in neurodegenerative diseases such as Alzheimer’s. Treatment with the compound also attenuated Alzheimer’s-like behavioral deficits in the mice that are due to injury to the hippocampus.

While previous research by the authors and many other investigators in the field has linked plaques, tangles and neuronal injury to synaptic dysfunction and cognitive decline, the direct linkage of glia to these processes and their potential as a selective target for new therapies has not previously been implicated so directly.

There are three key aspects of the report, Watterson said.

"First, a novel compound for development into a new class of Alzheimer’s disease therapeutics that target disease has been described. Second, an innovative approach was used for the rapid and cost-effective discovery of orally bioavailable, safe and efficacious compounds, and this approach can be extended to other disease areas," Watterson said.

"Third, the design, synthesis and in vivo analyses were carried out by a new generation of young scientists trained in our educational program to instruct the next generation of interdisciplinary scientists," Watterson said.

Northwestern University patented the compound designated 188WH and has exclusively licensed the patent rights to NeuroMedix, Inc., for clinical development.

Elizabeth Crown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>