Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Reverse’ tanning process could revolutionize leather industry

23.01.2006


A new ’greener’ and cleaner chemical process* could revolutionize the leather-tanning industry, according to a report in the Feb. 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ‘Reverse’ leather tanning, which essentially works backward from the point where conventional tanning ends, saves time, money and energy while drastically slashing water use and pollution, say researchers at the Central Leather Research Institute in Adyar, India.



From pre-tanning to finishing, conventional leather tanning requires about 15 steps, which produce enormous amounts of wastewater and pollutants, including sulfides, chlorides, sulfates and other compounds. The new approach flips the process around and eliminates some of the steps, which results in multiple and substantial production efficiencies, the researchers say.

In the new process, for instance, prior to tanning, the skins are treated with chemicals normally used after tanning is completed. According to the researchers, the reverse process produces leather that is comparable to conventional tanning, but requires 42 percent less time, 54 percent fewer chemicals, 42 percent less energy, 65 percent less water and cuts emissions of key pollutants by up to 79 percent. The results were achieved without changing chemicals or using new ones, the researchers note.


In addition to costing less and being “greener” than conventional tanning, the reverse process is “easy-to-adopt” and could help the global industry overcome emerging environmental and economic concerns, the researchers conclude.

*Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.

Michael Bernstein | EurekAlert!
Further information:
http://www.chemistry.org/greenchemistryinstitute
http://www.acs.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>