Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping the clock: Genetics of tumor latency in skin cancer

23.01.2006


Dr. Anthony E. Oro and colleagues (Stanford University) have identified two key Gli protein degradation signals that directly affect tumor latency in a mouse model of human skin cancer.



Their paper has been made available online ahead of print and will appear on the cover of the February 1 issue of the scientific journal Genes & Development.

Gli proteins are transcriptional mediators of the Sonic Hedgehog intracellular signaling pathway. Aberrant Shh signaling is implicated in a variety of human birth defects and about 25% of human tumors. Dr. Oro and colleagues found two sequences in the Gli1 protein – called Dn and Dc – that are recognized by the proteasome and facilitate Gli protein destruction. Mutations in these sequences (or "degrons" as they are called) prevent Gli1 degradation, causing, rather, the Gli1 protein to accumulate, and lead to accelerated tumorigenesis.


"Although we knew inducing hedgehog signaling in cells played an important role in human cancer induction and maintenance, we were puzzled by why it took so long in many cases. We were excited to find that normal cells have a way of protecting themselves from too much of the active Gli protein and surprised to discover that cancer cells appear to have disarmed that ability."

Dr. Oro and colleagues used transgenic mice expressing various forms of the Gli1 protein to demonstrate the link between Gli1 accumulation and tumor latency. Transgenic mice expressing wild-type Gli1 (in which the degrons are completely intact) develop basal cell carcinoma (BCC)-like tumor 6-8 weeks after birth. Mice expressing an altered form of either Dn or Dc (in which Gli1 is partially stabilized) develop BCC-like lesions at an earlier age. Remarkably, mice with mutated forms of both degrons (in which Gli1 is not degraded by the proteasome) die at birth, presenting severe ulcerating skin lesions similar to human BCCs.

This work convincingly shows that Gli protein accumulation contributes to the latency of Shh-dependent tumor formation, and that the modulation of Gli protein stability may thus represent a novel anticancer therapy. "We hope our studies will lead to ways to enhance the cell’s ability to get rid of Gli and halt cancer development," adds Dr. Oro.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>