Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The closest look ever at the cell’s machines


The first genome-wide screen for protein complexes is completed

Today researchers in Germany announce they have finished the first complete analysis of the ”molecular machines” in one of biology’s most important model organisms: S. cerevisiae (baker’s yeast). The study from the biotechnology company Cellzome, in collaboration with the European Molecular Biology Laboratory (EMBL), appears in this week’s online edition of Nature.

“To carry out their tasks, most proteins work in dynamic complexes that may contain dozens of molecules,” says Giulio Superti-Furga, who launched the large-scale project at Cellzome four years ago. “If you think of the cell as a factory floor, up to now, we’ve known some of the components of a fraction of the machines. That has seriously limited what we know about how cells work. This study gives us a nearly complete parts list of all the machines, and it goes beyond that to tell us how they populate the cell and partition tasks among themselves.”

The study combined a method of extracting complete protein complexes from cells (tandem affinity purification, developed in 2001 by Bertrand Séraphin at EMBL), mass spectrometry and bioinformatics to investigate the entire protein household of yeast, turning up 257 machines that had never been observed. It also revealed new components of nearly every complex already known.

In the course of the work, new computational techniques were developed at EMBL that gave new insights into the dynamic nature of protein complexes. In contrast to most man-made factories, cells continually dismantle and reassemble their machines at different stages of the cell cycle and in response to environmental challenges, such as infections.

“This would be a logistical nightmare if the cell had to build every machine from scratch any time it needed to do something,” says Anne-Claude Gavin, former Director of Molecular and Cell Biology at Cellzome and currently a team leader at EMBL. “We’ve discovered that the reality is different. Cells use a mixed strategy of prefabricating core elements of machines and then synthesizing additional, snap-on molecules that give each machine a precise function. That provides an economic way to diversify biological processes and also to control them.”

Thus if the cell needs to respond quickly, such as in a disease or another emergency, it may only need to produce few parts to switch on or tune the machine. On the other hand, if something shouldn’t happen, it may only need to block the production of a few molecules.

Patrick Aloy and Rob Russell at EMBL used sophisticated computer techniques to reveal the modular organisation of these cellular machines. “This is the most complete set of protein complexes available and probably the set with the highest quality,” Aloy says. “Most proteomics studies in the past have shown whether molecules interact or not, in a ‘yes/no’ way. The completeness of this data lets us see how likely any particular molecule is to bind to another. By combining such measurements for all the proteins in the cell, we discovered new complexes and revealed their modular nature.”

“Investigating protein complexes has always posed a tricky problem – they’re too small to be studied by microscopes, and generally too large to be studied by techniques like X-ray crystallography,” says Russell. “But they play such a crucial role in the cell that we need to fill in this gap. There’s still a huge amount to be learned from this data and from the methods we are developing to combine computational and biochemical investigations of the cell.”

“This is an important milestone towards a more global and systems-wide understanding of the cells of organisms ranging from yeast to humans,” says Peer Bork, Head of the Structural and Computational Biology Unit at EMBL, and one of the authors of the paper. “Ultimately we hope to achieve a ‘molecular anatomy’ that takes us from the level of the entire cell to the much deeper level of all the molecules and atoms that make it up.”

Baker’s yeast is evolutionary related to the cells of animals and humans, which means that the findings will be more widely applicable. “The same principles discovered here in yeast apply to human cells,” says Gitte Neubauer, Vice President at Cellzome. “Drug targets and pathologically relevant proteins are parts of machines and pathways.”

The collaboration between Cellzome and EMBL has been very successful, she says, producing fundamental new insights in how molecules are organised and contributing to Cellzome’s success in complex and pathway analysis.

Anna-Lynn Wegener | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>