Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The closest look ever at the cell’s machines

23.01.2006


The first genome-wide screen for protein complexes is completed



Today researchers in Germany announce they have finished the first complete analysis of the ”molecular machines” in one of biology’s most important model organisms: S. cerevisiae (baker’s yeast). The study from the biotechnology company Cellzome, in collaboration with the European Molecular Biology Laboratory (EMBL), appears in this week’s online edition of Nature.

“To carry out their tasks, most proteins work in dynamic complexes that may contain dozens of molecules,” says Giulio Superti-Furga, who launched the large-scale project at Cellzome four years ago. “If you think of the cell as a factory floor, up to now, we’ve known some of the components of a fraction of the machines. That has seriously limited what we know about how cells work. This study gives us a nearly complete parts list of all the machines, and it goes beyond that to tell us how they populate the cell and partition tasks among themselves.”


The study combined a method of extracting complete protein complexes from cells (tandem affinity purification, developed in 2001 by Bertrand Séraphin at EMBL), mass spectrometry and bioinformatics to investigate the entire protein household of yeast, turning up 257 machines that had never been observed. It also revealed new components of nearly every complex already known.

In the course of the work, new computational techniques were developed at EMBL that gave new insights into the dynamic nature of protein complexes. In contrast to most man-made factories, cells continually dismantle and reassemble their machines at different stages of the cell cycle and in response to environmental challenges, such as infections.

“This would be a logistical nightmare if the cell had to build every machine from scratch any time it needed to do something,” says Anne-Claude Gavin, former Director of Molecular and Cell Biology at Cellzome and currently a team leader at EMBL. “We’ve discovered that the reality is different. Cells use a mixed strategy of prefabricating core elements of machines and then synthesizing additional, snap-on molecules that give each machine a precise function. That provides an economic way to diversify biological processes and also to control them.”

Thus if the cell needs to respond quickly, such as in a disease or another emergency, it may only need to produce few parts to switch on or tune the machine. On the other hand, if something shouldn’t happen, it may only need to block the production of a few molecules.

Patrick Aloy and Rob Russell at EMBL used sophisticated computer techniques to reveal the modular organisation of these cellular machines. “This is the most complete set of protein complexes available and probably the set with the highest quality,” Aloy says. “Most proteomics studies in the past have shown whether molecules interact or not, in a ‘yes/no’ way. The completeness of this data lets us see how likely any particular molecule is to bind to another. By combining such measurements for all the proteins in the cell, we discovered new complexes and revealed their modular nature.”

“Investigating protein complexes has always posed a tricky problem – they’re too small to be studied by microscopes, and generally too large to be studied by techniques like X-ray crystallography,” says Russell. “But they play such a crucial role in the cell that we need to fill in this gap. There’s still a huge amount to be learned from this data and from the methods we are developing to combine computational and biochemical investigations of the cell.”

“This is an important milestone towards a more global and systems-wide understanding of the cells of organisms ranging from yeast to humans,” says Peer Bork, Head of the Structural and Computational Biology Unit at EMBL, and one of the authors of the paper. “Ultimately we hope to achieve a ‘molecular anatomy’ that takes us from the level of the entire cell to the much deeper level of all the molecules and atoms that make it up.”

Baker’s yeast is evolutionary related to the cells of animals and humans, which means that the findings will be more widely applicable. “The same principles discovered here in yeast apply to human cells,” says Gitte Neubauer, Vice President at Cellzome. “Drug targets and pathologically relevant proteins are parts of machines and pathways.”

The collaboration between Cellzome and EMBL has been very successful, she says, producing fundamental new insights in how molecules are organised and contributing to Cellzome’s success in complex and pathway analysis.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads/press06/press22jan06.html

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>