Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing crops to cope with climate change

20.01.2006


Scientists at the UK’s leading plant science centre have uncovered a gene that could help to develop new varieties of crop that will be able to cope with the changing world climate. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at the John Innes Centre in Norwich have identified the gene in barley that controls how the plant responds to seasonal changes in the length of the day. This is key to understanding how plants have adapted their flowering behaviour to different environments.



The John Innes Centre researchers have discovered that the Ppd-H1 gene in barley controls the timing of the activity of another gene called CO. When the length of the day is long enough CO activates one of the key genes that triggers flowering. Naturally occurring variation in Ppd-H1 affects the time of day when CO is activated. This shifts the time of year that the plant flowers.

Dr David Laurie, the research leader at the John Innes Centre, said, "Growing crops will become more difficult as the global climate changes. The varieties of crops grown in the UK are suited to the soil, seasons and traditional cool, wet summers. Later flowering in barley means it has a longer growing period to amass yield. If British summers get hotter and drier we will need types of wheat, barley and other crops that flower earlier, like Mediterranean varieties, to beat summer droughts. However, new varieties will need to be adapted in all other ways to UK conditions. "


With the new knowledge about the workings of barley researchers and plant breeders will find it easier to select variations that will thrive in the UK environment but will also flower earlier, coping with hotter summers.

Dr Laurie commented, "Although our research has been on barley we know from observation that other crops show similar variation in the way they respond to the lengthening of the day in springtime. We are confident that we will find equivalent genes in other key crops."

Professor Julia Goodfellow, BBSRC Chief Executive, said, "Climate change presents a huge challenge for the world. Although every effort must be concentrated on reducing the impact of human activity on the environment, science should also be answering questions about how we can live in an altered climate. Research such as this helps to present answers to some of these problems."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>