Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Find New Evidence for One-Way Evolution

20.01.2006


By tracing the 30-million year history of variation in a gene found in plants such as tomatoes and tobacco, biologists at the University of California, San Diego have found new evidence to support an old idea — that some evolutionary changes are irreversible.


Fruit and flower of wolfberry, a member of the Solanaceae family. Boris Igic, UCSD


Flowers of jimsonweed, a species that can self fertilize. Boris Igic, UCSD



Their study, published this week in an early online edition of the journal Proceedings of the National Academy of Sciences, offers new support for the idea that the loss of complex traits, like eyes, wings or in this case a reproductive mechanism, is often irreversible. In other words, once lost, the traits never revert to their original state.

"This is the strongest evidence yet to support irreversibility,” said Joshua Kohn, an associate professor of biology at UCSD who headed the study. "If we had not used the genetic data coding for this reproductive mechanism and only inferred the pattern of evolution based on the traits of living species, we would have come to the opposite conclusion and with high statistical support — that the trait evolved more than once.”


The scientists examined existing variation in the gene used by many members of the Solanaceae family, which include tomatoes and tobacco, to recognize and reject their own pollen, thereby avoiding self-fertilization and the harmful effects of inbreeding. This ability is sometimes lost, as is the case for garden tomatoes, which can set seed by self-fertilization. Apparently, once lost, the ability to reject pollen in order to prevent self-fertilization is never regained.

Irreversible loss of complex traits, which result from the combined interaction of several genes, is an old and at times controversial scientific question. While the late evolutionary biologist Stephen Jay Gould popularized the hypothesis of irreversibility, known as Dollo’s Law, studies that use current methods to reconstruct the evolution of complex traits often fail to support it. This is because it is often difficult to reconstruct characteristics of extinct ancestors with any certainty.

The study contradicts earlier studies of complex trait evolution, which have tended to favor multiple reappearances of complex traits after these organs were lost in ancestral species. The authors suggest that traditional methods for reconstructing the history of trait evolution may be inaccurate.

Discovering irreversible change for this sexual system trait highlights the importance of considering genetic data underlying the trait when reconstructing its evolutionary history.

“Our work implies that evidence for such evolutionary change in other cases may have been missed because the current methods aren’t sufficiently refined,” said Boris Igic, who conducted the study while a graduate student at UCSD and is now a postdoctoral fellow at Cornell University.

While lending support to the question of unidirectional evolution, the biologists’ findings also lead to new questions.

“Apparently, plants that have sex exclusively with other plants and not themselves, enjoy a greater evolutionary advantage,” Igic said. “Exactly why is unclear,”

Species capable of rejecting their own pollen in favor of pollen from other individuals, harbor more genetic variation than those that self-fertilize.

“An intriguing aspect of this study is that the mechanism for ensuring cross-fertilization is very old, often lost, and never regained,” Kohn said. “That it is still common despite frequent and irreversible loss implies that this trait confers an advantage to species that possess it, perhaps in terms of reduced rates of extinction.”

The study was supported by a grant from the National Science Foundation.

Media Contact: Kim McDonald (858) 534-7572.

Comment: Joshua Kohn (858) 534-8233.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>