Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Find New Evidence for One-Way Evolution

20.01.2006


By tracing the 30-million year history of variation in a gene found in plants such as tomatoes and tobacco, biologists at the University of California, San Diego have found new evidence to support an old idea — that some evolutionary changes are irreversible.


Fruit and flower of wolfberry, a member of the Solanaceae family. Boris Igic, UCSD


Flowers of jimsonweed, a species that can self fertilize. Boris Igic, UCSD



Their study, published this week in an early online edition of the journal Proceedings of the National Academy of Sciences, offers new support for the idea that the loss of complex traits, like eyes, wings or in this case a reproductive mechanism, is often irreversible. In other words, once lost, the traits never revert to their original state.

"This is the strongest evidence yet to support irreversibility,” said Joshua Kohn, an associate professor of biology at UCSD who headed the study. "If we had not used the genetic data coding for this reproductive mechanism and only inferred the pattern of evolution based on the traits of living species, we would have come to the opposite conclusion and with high statistical support — that the trait evolved more than once.”


The scientists examined existing variation in the gene used by many members of the Solanaceae family, which include tomatoes and tobacco, to recognize and reject their own pollen, thereby avoiding self-fertilization and the harmful effects of inbreeding. This ability is sometimes lost, as is the case for garden tomatoes, which can set seed by self-fertilization. Apparently, once lost, the ability to reject pollen in order to prevent self-fertilization is never regained.

Irreversible loss of complex traits, which result from the combined interaction of several genes, is an old and at times controversial scientific question. While the late evolutionary biologist Stephen Jay Gould popularized the hypothesis of irreversibility, known as Dollo’s Law, studies that use current methods to reconstruct the evolution of complex traits often fail to support it. This is because it is often difficult to reconstruct characteristics of extinct ancestors with any certainty.

The study contradicts earlier studies of complex trait evolution, which have tended to favor multiple reappearances of complex traits after these organs were lost in ancestral species. The authors suggest that traditional methods for reconstructing the history of trait evolution may be inaccurate.

Discovering irreversible change for this sexual system trait highlights the importance of considering genetic data underlying the trait when reconstructing its evolutionary history.

“Our work implies that evidence for such evolutionary change in other cases may have been missed because the current methods aren’t sufficiently refined,” said Boris Igic, who conducted the study while a graduate student at UCSD and is now a postdoctoral fellow at Cornell University.

While lending support to the question of unidirectional evolution, the biologists’ findings also lead to new questions.

“Apparently, plants that have sex exclusively with other plants and not themselves, enjoy a greater evolutionary advantage,” Igic said. “Exactly why is unclear,”

Species capable of rejecting their own pollen in favor of pollen from other individuals, harbor more genetic variation than those that self-fertilize.

“An intriguing aspect of this study is that the mechanism for ensuring cross-fertilization is very old, often lost, and never regained,” Kohn said. “That it is still common despite frequent and irreversible loss implies that this trait confers an advantage to species that possess it, perhaps in terms of reduced rates of extinction.”

The study was supported by a grant from the National Science Foundation.

Media Contact: Kim McDonald (858) 534-7572.

Comment: Joshua Kohn (858) 534-8233.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>