Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD Biologists Find New Evidence for One-Way Evolution


By tracing the 30-million year history of variation in a gene found in plants such as tomatoes and tobacco, biologists at the University of California, San Diego have found new evidence to support an old idea — that some evolutionary changes are irreversible.

Fruit and flower of wolfberry, a member of the Solanaceae family. Boris Igic, UCSD

Flowers of jimsonweed, a species that can self fertilize. Boris Igic, UCSD

Their study, published this week in an early online edition of the journal Proceedings of the National Academy of Sciences, offers new support for the idea that the loss of complex traits, like eyes, wings or in this case a reproductive mechanism, is often irreversible. In other words, once lost, the traits never revert to their original state.

"This is the strongest evidence yet to support irreversibility,” said Joshua Kohn, an associate professor of biology at UCSD who headed the study. "If we had not used the genetic data coding for this reproductive mechanism and only inferred the pattern of evolution based on the traits of living species, we would have come to the opposite conclusion and with high statistical support — that the trait evolved more than once.”

The scientists examined existing variation in the gene used by many members of the Solanaceae family, which include tomatoes and tobacco, to recognize and reject their own pollen, thereby avoiding self-fertilization and the harmful effects of inbreeding. This ability is sometimes lost, as is the case for garden tomatoes, which can set seed by self-fertilization. Apparently, once lost, the ability to reject pollen in order to prevent self-fertilization is never regained.

Irreversible loss of complex traits, which result from the combined interaction of several genes, is an old and at times controversial scientific question. While the late evolutionary biologist Stephen Jay Gould popularized the hypothesis of irreversibility, known as Dollo’s Law, studies that use current methods to reconstruct the evolution of complex traits often fail to support it. This is because it is often difficult to reconstruct characteristics of extinct ancestors with any certainty.

The study contradicts earlier studies of complex trait evolution, which have tended to favor multiple reappearances of complex traits after these organs were lost in ancestral species. The authors suggest that traditional methods for reconstructing the history of trait evolution may be inaccurate.

Discovering irreversible change for this sexual system trait highlights the importance of considering genetic data underlying the trait when reconstructing its evolutionary history.

“Our work implies that evidence for such evolutionary change in other cases may have been missed because the current methods aren’t sufficiently refined,” said Boris Igic, who conducted the study while a graduate student at UCSD and is now a postdoctoral fellow at Cornell University.

While lending support to the question of unidirectional evolution, the biologists’ findings also lead to new questions.

“Apparently, plants that have sex exclusively with other plants and not themselves, enjoy a greater evolutionary advantage,” Igic said. “Exactly why is unclear,”

Species capable of rejecting their own pollen in favor of pollen from other individuals, harbor more genetic variation than those that self-fertilize.

“An intriguing aspect of this study is that the mechanism for ensuring cross-fertilization is very old, often lost, and never regained,” Kohn said. “That it is still common despite frequent and irreversible loss implies that this trait confers an advantage to species that possess it, perhaps in terms of reduced rates of extinction.”

The study was supported by a grant from the National Science Foundation.

Media Contact: Kim McDonald (858) 534-7572.

Comment: Joshua Kohn (858) 534-8233.

Kim McDonald | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>