Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics plays role in relapse of illicit drug-seeking behavior

20.01.2006


Inbred strains of rats differ in how aggressively they seek cocaine after a few weeks of use, researchers say.



The finding, posted online Jan. 18 by Psychopharmacology, is another piece of evidence that genetics plays a role in the relapse of drug-seeking behavior in humans, says Dr. Paul J. Kruzich, behavioral neuroscientist at the Medical College of Georgia and lead study author.

It also fingers glutamate, a neurotransmitter involved in learning and memory, as an accomplice in stirring the cravings and uncontrollable urges that drive some drug users to use again, he says.


“Given the right environmental stimuli, all persons addicted to psychostimulants can relapse, but potentially some people are a little more susceptible than others … it’s all about gene-environment interaction,” says Dr. Kruzich.

He took two strains of inbred rats – Fischer 344 and Lewis – with known genetic differences, enabled each to self-adminster cocaine for 14 days, then took the drug away for a week but not the levers the animals used to access it.

During that hiatus, he adminstered a drug that stimulates glutamate receptors, possible targets for drugs of abuse.

He found that the F344 strain worked harder to get cocaine than the Lewis rats following treatment with the glutamate drug, suggesting they were more susceptible to relapse.

“Maybe 12-step programs and faith-based programs will be enough to keep some people from relapsing,” says Dr. Kruzich. “For others we may have to come up with medical treatments we can use on top of those to keep them from taking drugs again.”

He says there are many different versions of the hundreds of genes that may play a role in increasing the risk of relapse.

It’s known that some people become addicted more quickly than others, some literally with their first use, he says. The hardest part is not getting people to stop taking drugs: that happens when they are checked in a clinic or put in jail. The real work is keeping them from relapsing when they are out of such restricted environs, he says.

“Something happens, either they see an old colleague they have used with, they go into an old environment, they have a huge stressor in life and they start to want the drug. They have drug hunger, what we call drug craving,” says Dr. Kruzich. “When it gets bad enough, they engage in drug-seeking behavior.”

His lab is working to identify the relapse trigger to use as a target for developing ways to curb craving and subsequent relapse.

His studies focus on an area of the brain called the nucleus accumbens core, a target for drugs of abuse long considered a pleasure center, Dr. Kruzich says. Drugs such as cocaine and methamphetamine stimulate release of dopamine in the nucleus accumbens. Dopamine is a neurotransmitter believed responsible for the euphoria that come with drug use. In fact, animals given dopamine blockers won’t self-adminster drugs of abuse, and dopamine has long been a focus of drug-abuse studies.

“These drugs impinge upon the reward centers of the brain that normally food, sex, survival and adaptation impinge upon,” says Dr. Kruzich. “When you are having that great piece of cheesecake and thinking, ‘Oh man,’ that is the kind of response these drug of abuse are evoking but much more so than that cheesecake could ever do.”

Glutamate, also released in the nucleus accumbens core, may play an equally important role in drug relapse, he says. Drugs such as cocaine appear to alter glutamate neurotransmission in the core, which may contribute to the rewiring of the brain that occurs with drug use. “It’s not that these drugs just damage neurons, which they can, but they rewire the circuitry of the brain so no longer is your spouse or your job or other things in your life important to you. Your brain is tricked into thinking that drugs are the most important thing for your survival,” Dr. Kruzich says.

Unfortunately, drugs that restore glutamate function also produce seizures, so scientists are looking for an indirect approach to restore the misdirected rewiring.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>