Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny RNA molecules fine-tune the brain’s synapses

19.01.2006


A new mechanism for regulating brain function



Non-coding regions of the genome – those that don’t code for proteins – are now known to include important elements that regulate gene activity. Among those elements are microRNAs, tiny, recently discovered RNA molecules that suppress gene expression.

Increasing evidence indicates a role for microRNAs in the developing nervous system, and researchers from Children’s Hospital Boston now demonstrate that one microRNA affects the development of synapses – the points of communication between brain cells that underlie learning and memory. The findings appear in the January 19th issue of Nature.


"This paper provides the first evidence that microRNAs have a role at the synapse, allowing for a new level of regulation of gene expression," says senior author Michael Greenberg, PhD, Director of Neuroscience at Children’s Hospital Boston. "What we’ve found is a new mechanism for regulating brain function."

The brain’s ability to form and refine synapses allows organisms to learn and respond to their environment, strengthening important synaptic connections, forming new ones, and allowing unimportant ones to weaken. Experiments in Greenberg’s lab, done in rats, showed that a microRNA called miR-134 regulates the size of dendritic spines, the protrusions from a neuron’s dendrites where synapses form. When neurons were exposed to miR-134, spine volume significantly decreased, weakening the synapse. When miR-134 was inhibited, spines increased in size, strengthening the synapse.

Further experiments showed that miR-134 acts by inhibiting expression of a gene called Limk1, which causes dendritic spines to grow. When neurons were exposed to a growth factor known as brain-derived neurotrophic factor (BDNF), this inhibition was overcome and Limk1 became active again, enhancing spine growth.

Greenberg believes that miR-134 – and other microRNAs his lab is studying – may play a role in fine-tuning cognitive function by selectively controlling synapse development in response to environmental stimuli. "A single neuron can form a thousand synapses," says Greenberg, also a professor of neurology and neuroscience at Harvard Medical School. "If you could selectively control what’s happening at one synapse without affecting another, you greatly increase the information storage and computational capacity of the brain."

Greenberg also speculates that miR-134 may be relevant to disorders such as mental retardation and autism. He notes that loss of Limk1 due to a chromosomal deletion is associated with Williams syndrome, and that the BDNF pathway that activates Limk1 includes proteins that are disabled in tuberous sclerosis and Fragile X syndrome. All three genetic disorders can cause cognitive impairment and autistic-like behaviors.

Bess Andrews | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>