Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did our ancestors breathe through their ears?

19.01.2006


A fossil fish skull from Latvia that researchers from Uppsala University, Sweden, describe in this weeks issue of Nature shows that the earliest land animals probably breathed through their ears.



"It looks as if the first step in the evolution of the middle ear had nothing to do with hearing. Our forebears developed ears in order to breathe through them," says Professor Per Ahlberg.

The human sense of hearing is based on the interaction of two different organs: the inner ear and the middle ear. The inner ear contains sensory cells that capture sound vibrations and send them on as nerve impulses to the brain. The middle ear is an ingenious mechanical audio amplifier that captures the weak sound vibrations in the air with a membrane (the eardrum), amplifies them with a leverage system (ear bones) and sends them on to the inner ear. Without the middle ear, the inner ear would not function.


All vertebrates have inner ears, but the middle ear exists only in land animals. Fish dont need middle ears since sound vibrations are stronger in water and easily pass through the body of a fish. The construction of the middle ear differs, however, among different groups of land animals: mammals have an eardrum and three ear bones (hammer (malleus), anvil (incus), and stirrup (stapes)), while birds, reptiles, and frogs have only one ear bone (stirrup) that connects the eardrum directly to the inner ear. But it is questionable whether the eardrums in mammals, reptiles, and frogs are identical or whether they arose independently of each other.

A comparison with fish muddies the picture even further: instead of middle ears, fish have a little gill, the blow-hole, that isnt covered by an eardrum but rather forms an open canal between the throat and the outside of the head. The equivalent of the stirrup, the hyomandibula, supports the gill lid but has no contact with the inner ear. Neither the hyomandibula nor the blow-hole plays any role in hearing.

These differences make it difficult to understand how the middle ear arose. How could evolution change both the structure and function of the fishes‚ blow-hole so radically? Did the earliest land animals have a sound amplifying middle ear at all? The earliest fossil land vertebrates or tetrapods, like Acanthostega from Greenland (that lived roughly 360 million years ago), had a stirrup that was in contact with the inner ear, but it was large and clumsy and appears not to have been connected to the eardrum. They also had a couple of round Œoutlets‚ in the rear edge of the skull: in modern frogs the corresponding outlet is the fastening point for the eardrum, but in fish it is the site of the outer opening of the blow-hole. This combination of characteristics has led to the hypothesis that the earliest land animals still had open blow-holes and perhaps breathed through them.

The Uppsala scientists‚ new data strongly support this hypothesis. The information comes from the skull of a Panderichthys from Latvia, the fossil fish that is closest to the emergence of land animals. It has been known that Panderichthys had a hyomandibula, and it was generally assumed that its blow-hole was of the normal fish type. But this is not the case: in actual fact the hole is similar to the middle ear‚ of a tetrapod like Acanthostega. Since the hyomandibula of the Panderichthys had no contact with the inner ear, its blow-hole could hardly have had a sound-amplification function.

"Thus the transformation of the form of the blow-hole must have been caused by another driving force than the improvement of hearing," says Per Ahlberg.

Compared with closely related fish, the blow-hole in Panderichthys has a considerably larger diameter and is furthermore both shorter and straighter. It looks like an adaptation to active breathing (of either water or air) through the blow-hole, compared with ordinary‚ fish in which only a small portion of breathing water passes through this hole. A similar adaptation can be seen in modern rays, which have a very large blow-hole.

Since the middle ear‚ in the earliest tetrapods has the same form as the blow-hole‚ in Panderichthys, it seems likely that they retained the breathing function. But in tetrapods the gill lid is gone and the hyomandibula is transformed into a primitive stirrup. The fact that the stirrup has contact with the inner ear indicates that a rudimentary hearing function had also been added.

"We can speculate about how this came about. The blow-hole of a fish can be closed by a valve muscle on top. If an early tetrapod did the same thing, a truly enclosed middle ear was temporarily created, where the stirrup, which probably supported the wall of the middle ear, could forward vibrations from the middle ear to the inner ear. When the hearing function eventually became more important, the blow-hole was permanently closed by an eardrum," reasons Per Ahlberg.

The article is being published in Nature on January 19.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>