Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Did our ancestors breathe through their ears?


A fossil fish skull from Latvia that researchers from Uppsala University, Sweden, describe in this weeks issue of Nature shows that the earliest land animals probably breathed through their ears.

"It looks as if the first step in the evolution of the middle ear had nothing to do with hearing. Our forebears developed ears in order to breathe through them," says Professor Per Ahlberg.

The human sense of hearing is based on the interaction of two different organs: the inner ear and the middle ear. The inner ear contains sensory cells that capture sound vibrations and send them on as nerve impulses to the brain. The middle ear is an ingenious mechanical audio amplifier that captures the weak sound vibrations in the air with a membrane (the eardrum), amplifies them with a leverage system (ear bones) and sends them on to the inner ear. Without the middle ear, the inner ear would not function.

All vertebrates have inner ears, but the middle ear exists only in land animals. Fish dont need middle ears since sound vibrations are stronger in water and easily pass through the body of a fish. The construction of the middle ear differs, however, among different groups of land animals: mammals have an eardrum and three ear bones (hammer (malleus), anvil (incus), and stirrup (stapes)), while birds, reptiles, and frogs have only one ear bone (stirrup) that connects the eardrum directly to the inner ear. But it is questionable whether the eardrums in mammals, reptiles, and frogs are identical or whether they arose independently of each other.

A comparison with fish muddies the picture even further: instead of middle ears, fish have a little gill, the blow-hole, that isnt covered by an eardrum but rather forms an open canal between the throat and the outside of the head. The equivalent of the stirrup, the hyomandibula, supports the gill lid but has no contact with the inner ear. Neither the hyomandibula nor the blow-hole plays any role in hearing.

These differences make it difficult to understand how the middle ear arose. How could evolution change both the structure and function of the fishes‚ blow-hole so radically? Did the earliest land animals have a sound amplifying middle ear at all? The earliest fossil land vertebrates or tetrapods, like Acanthostega from Greenland (that lived roughly 360 million years ago), had a stirrup that was in contact with the inner ear, but it was large and clumsy and appears not to have been connected to the eardrum. They also had a couple of round Œoutlets‚ in the rear edge of the skull: in modern frogs the corresponding outlet is the fastening point for the eardrum, but in fish it is the site of the outer opening of the blow-hole. This combination of characteristics has led to the hypothesis that the earliest land animals still had open blow-holes and perhaps breathed through them.

The Uppsala scientists‚ new data strongly support this hypothesis. The information comes from the skull of a Panderichthys from Latvia, the fossil fish that is closest to the emergence of land animals. It has been known that Panderichthys had a hyomandibula, and it was generally assumed that its blow-hole was of the normal fish type. But this is not the case: in actual fact the hole is similar to the middle ear‚ of a tetrapod like Acanthostega. Since the hyomandibula of the Panderichthys had no contact with the inner ear, its blow-hole could hardly have had a sound-amplification function.

"Thus the transformation of the form of the blow-hole must have been caused by another driving force than the improvement of hearing," says Per Ahlberg.

Compared with closely related fish, the blow-hole in Panderichthys has a considerably larger diameter and is furthermore both shorter and straighter. It looks like an adaptation to active breathing (of either water or air) through the blow-hole, compared with ordinary‚ fish in which only a small portion of breathing water passes through this hole. A similar adaptation can be seen in modern rays, which have a very large blow-hole.

Since the middle ear‚ in the earliest tetrapods has the same form as the blow-hole‚ in Panderichthys, it seems likely that they retained the breathing function. But in tetrapods the gill lid is gone and the hyomandibula is transformed into a primitive stirrup. The fact that the stirrup has contact with the inner ear indicates that a rudimentary hearing function had also been added.

"We can speculate about how this came about. The blow-hole of a fish can be closed by a valve muscle on top. If an early tetrapod did the same thing, a truly enclosed middle ear was temporarily created, where the stirrup, which probably supported the wall of the middle ear, could forward vibrations from the middle ear to the inner ear. When the hearing function eventually became more important, the blow-hole was permanently closed by an eardrum," reasons Per Ahlberg.

The article is being published in Nature on January 19.

Anneli Waara | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>