Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did our ancestors breathe through their ears?

19.01.2006


A fossil fish skull from Latvia that researchers from Uppsala University, Sweden, describe in this weeks issue of Nature shows that the earliest land animals probably breathed through their ears.



"It looks as if the first step in the evolution of the middle ear had nothing to do with hearing. Our forebears developed ears in order to breathe through them," says Professor Per Ahlberg.

The human sense of hearing is based on the interaction of two different organs: the inner ear and the middle ear. The inner ear contains sensory cells that capture sound vibrations and send them on as nerve impulses to the brain. The middle ear is an ingenious mechanical audio amplifier that captures the weak sound vibrations in the air with a membrane (the eardrum), amplifies them with a leverage system (ear bones) and sends them on to the inner ear. Without the middle ear, the inner ear would not function.


All vertebrates have inner ears, but the middle ear exists only in land animals. Fish dont need middle ears since sound vibrations are stronger in water and easily pass through the body of a fish. The construction of the middle ear differs, however, among different groups of land animals: mammals have an eardrum and three ear bones (hammer (malleus), anvil (incus), and stirrup (stapes)), while birds, reptiles, and frogs have only one ear bone (stirrup) that connects the eardrum directly to the inner ear. But it is questionable whether the eardrums in mammals, reptiles, and frogs are identical or whether they arose independently of each other.

A comparison with fish muddies the picture even further: instead of middle ears, fish have a little gill, the blow-hole, that isnt covered by an eardrum but rather forms an open canal between the throat and the outside of the head. The equivalent of the stirrup, the hyomandibula, supports the gill lid but has no contact with the inner ear. Neither the hyomandibula nor the blow-hole plays any role in hearing.

These differences make it difficult to understand how the middle ear arose. How could evolution change both the structure and function of the fishes‚ blow-hole so radically? Did the earliest land animals have a sound amplifying middle ear at all? The earliest fossil land vertebrates or tetrapods, like Acanthostega from Greenland (that lived roughly 360 million years ago), had a stirrup that was in contact with the inner ear, but it was large and clumsy and appears not to have been connected to the eardrum. They also had a couple of round Œoutlets‚ in the rear edge of the skull: in modern frogs the corresponding outlet is the fastening point for the eardrum, but in fish it is the site of the outer opening of the blow-hole. This combination of characteristics has led to the hypothesis that the earliest land animals still had open blow-holes and perhaps breathed through them.

The Uppsala scientists‚ new data strongly support this hypothesis. The information comes from the skull of a Panderichthys from Latvia, the fossil fish that is closest to the emergence of land animals. It has been known that Panderichthys had a hyomandibula, and it was generally assumed that its blow-hole was of the normal fish type. But this is not the case: in actual fact the hole is similar to the middle ear‚ of a tetrapod like Acanthostega. Since the hyomandibula of the Panderichthys had no contact with the inner ear, its blow-hole could hardly have had a sound-amplification function.

"Thus the transformation of the form of the blow-hole must have been caused by another driving force than the improvement of hearing," says Per Ahlberg.

Compared with closely related fish, the blow-hole in Panderichthys has a considerably larger diameter and is furthermore both shorter and straighter. It looks like an adaptation to active breathing (of either water or air) through the blow-hole, compared with ordinary‚ fish in which only a small portion of breathing water passes through this hole. A similar adaptation can be seen in modern rays, which have a very large blow-hole.

Since the middle ear‚ in the earliest tetrapods has the same form as the blow-hole‚ in Panderichthys, it seems likely that they retained the breathing function. But in tetrapods the gill lid is gone and the hyomandibula is transformed into a primitive stirrup. The fact that the stirrup has contact with the inner ear indicates that a rudimentary hearing function had also been added.

"We can speculate about how this came about. The blow-hole of a fish can be closed by a valve muscle on top. If an early tetrapod did the same thing, a truly enclosed middle ear was temporarily created, where the stirrup, which probably supported the wall of the middle ear, could forward vibrations from the middle ear to the inner ear. When the hearing function eventually became more important, the blow-hole was permanently closed by an eardrum," reasons Per Ahlberg.

The article is being published in Nature on January 19.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>